题目内容
【题目】已知a,b,c∈R,a2+b2+c2=1.
(Ⅰ)求证:|a+b+c|≤ ;
(Ⅱ)若不等式|x﹣1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,求实数x的取值范围.
【答案】解:(Ⅰ)证明:由柯西不等式得,(a+b+c)2≤(12+12+12)(a2+b2+c2),
即有(a+b+c)2≤3,即有|a+b+c|≤ ;
(Ⅱ)解:不等式|x﹣1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,
则由(Ⅰ)可知,|x﹣1|+|x+1|≥3,
由x≥1得,2x≥3,解得,x≥ ;
由x≤﹣1,﹣2x≥3解得,x≤﹣ ,
由﹣1<x<1得,2≥3,不成立.
综上,可得x≥ 或x≤﹣ .
则实数x的取值范围是(﹣ ]∪[ )
【解析】(Ⅰ)由柯西不等式得,(a+b+c)2≤(12+12+12)(a2+b2+c2),即可得证;(Ⅱ)不等式|x﹣1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,则由(Ⅰ)可知,|x﹣1|+|x+1|≥3,运用绝对值的定义,即可解出不等式.
【考点精析】通过灵活运用绝对值不等式的解法和不等式的证明,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号;不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等即可以解答此题.
练习册系列答案
相关题目