题目内容

在数列{an}中,a1=5,an+1=3an+2n+1(n∈N*)
(1)求数列{an}的通项公式;
(2)令bn=
2n+1
3n+1-an
,求数列{bn}的前n项和sn
(3)令cn=
an
an+1
,数列{cn}的前n项和Tn,求证:Tn
3n-4
9
分析:(1)由a1=5,an+1=3an+2n+1(n∈N*),知an+1+2•2n+1=3(an+2×2n),由此利用构造法能求出an
(2)由an=3n+1-2n+1,知bn=
2n+1
3n+1-an
=
2n+1
2n+1
=(2n+1)(
1
2
)
n+1
,故Sn=(
1
2
)
2
+5×(
1
2
)
3
+…+(2n+1)•(
1
2
)
n+1
,由此利用错位相减法能够求出数列{bn}的前n项和Sn
(3)由an=3n+1-2n+1,知cn=
an
an+1
=
3n+1-2n+1
3n+2-2n+2
=
1-(
2
3
)
n+1
3-2•(
2
3
)
n+1
1
3
[1-(
2
3
)
n+1
]
,由此利用放缩法能够证明Tn
3n-4
9
解答:解:(1)∵a1=5,an+1=3an+2n+1(n∈N*)
∴an+1+2•2n+1=3(an+2×2n),
∵a1+2•21=9
∴{an+2n+1}是等比数列,公比为3,
∴an+2n+1=3n+1
∴an=3n+1-2n+1
(2)∵an=3n+1-2n+1
bn=
2n+1
3n+1-an
=
2n+1
2n+1
=(2n+1)(
1
2
)
n+1

∴Sn=(
1
2
)
2
+5×(
1
2
)
3
+…+(2n+1)•(
1
2
)
n+1

1
2
Sn=3×(
1
2
)
3
+5×(
1
2
)
4
+…+(2n+1)
(
1
2
)
n+2

1
2
Sn=3×(
1
2
)
2
+2×(
1
2
)
3
+…+
(
1
2
)
n+1
-(2n+1)•(
1
2
)
n+2

=(
1
2
)
2
+2[(
1
2
)
2
+(
1
2
)
3
+…+(
1
2
)
n+1
]
-(2n+1)(
1
2
)
n+2

=
1
4
+[1-(
1
2
)
n
]-(2n+1)•(
1
2
)
n+2

=
5
4
-
2n+5
2n+2

∴Sn=
5
2
-
2n+5
2 n+1

(3)∵an=3n+1-2n+1
cn=
an
an+1
=
3n+1-2n+1
3n+2-2n+2

=
1-(
2
3
)
n+1
3-2•(
2
3
)
n+1
1
3
[1-(
2
3
)
n+1
]

∴Tn=c1+c2+…+cn
1
3
[1-(
2
3
)
2
]
+
1
3
[1-(
2
3
)
3
]
+…+
1
3
[1-(
2
3
)
n+1
]

=
n
3
-
1
3
×
4
9
[1-(
2
3
)
n
]
1-
2
3

=
n
3
-
4
9
+
4
9
×(
2
3
)
n
3n-4
9

Tn
3n-4
9
点评:本题考查利用构造法求数列的通项公式,利用错位相减法求数列的前n项和,利用放缩法证明不等式.解题时要认真审题,仔细解答,注意转化化归思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网