题目内容
在数列{an}中,a1=5,an+1=3an+2n+1(n∈N*)
(1)求数列{an}的通项公式;
(2)令bn=
,求数列{bn}的前n项和sn;
(3)令cn=
,数列{cn}的前n项和Tn,求证:Tn>
.
(1)求数列{an}的通项公式;
(2)令bn=
2n+1 |
3n+1-an |
(3)令cn=
an |
an+1 |
3n-4 |
9 |
分析:(1)由a1=5,an+1=3an+2n+1(n∈N*),知an+1+2•2n+1=3(an+2×2n),由此利用构造法能求出an.
(2)由an=3n+1-2n+1,知bn=
=
=(2n+1)•(
)n+1,故Sn=3×(
)2+5×(
)3+…+(2n+1)•(
)n+1,由此利用错位相减法能够求出数列{bn}的前n项和Sn.
(3)由an=3n+1-2n+1,知cn=
=
=
>
[1-(
)n+1],由此利用放缩法能够证明Tn>
.
(2)由an=3n+1-2n+1,知bn=
2n+1 |
3n+1-an |
2n+1 |
2n+1 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
(3)由an=3n+1-2n+1,知cn=
an |
an+1 |
3n+1-2n+1 |
3n+2-2n+2 |
1-(
| ||
3-2•(
|
1 |
3 |
2 |
3 |
3n-4 |
9 |
解答:解:(1)∵a1=5,an+1=3an+2n+1(n∈N*)
∴an+1+2•2n+1=3(an+2×2n),
∵a1+2•21=9
∴{an+2n+1}是等比数列,公比为3,
∴an+2n+1=3n+1,
∴an=3n+1-2n+1.
(2)∵an=3n+1-2n+1,
∴bn=
=
=(2n+1)•(
)n+1,
∴Sn=3×(
)2+5×(
)3+…+(2n+1)•(
)n+1
Sn=3×(
)3+5×(
)4+…+(2n+1)•(
)n+2,
∴
Sn=3×(
)2+2×(
)3+…+2×(
)n+1-(2n+1)•(
)n+2
=(
)2+2[(
)2+(
)3+…+(
)n+1]-(2n+1)•(
)n+2
=
+[1-(
)n]-(2n+1)•(
)n+2
=
-
.
∴Sn=
-
.
(3)∵an=3n+1-2n+1,
∴cn=
=
=
>
[1-(
)n+1],
∴Tn=c1+c2+…+cn
>
[1-(
)2]+
[1-(
)3]+…+
[1-(
)n+1]
=
-
×
=
-
+
×(
)n>
.
∴Tn>
.
∴an+1+2•2n+1=3(an+2×2n),
∵a1+2•21=9
∴{an+2n+1}是等比数列,公比为3,
∴an+2n+1=3n+1,
∴an=3n+1-2n+1.
(2)∵an=3n+1-2n+1,
∴bn=
2n+1 |
3n+1-an |
2n+1 |
2n+1 |
1 |
2 |
∴Sn=3×(
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
=(
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
=
1 |
4 |
1 |
2 |
1 |
2 |
=
5 |
4 |
2n+5 |
2n+2 |
∴Sn=
5 |
2 |
2n+5 |
2 n+1 |
(3)∵an=3n+1-2n+1,
∴cn=
an |
an+1 |
3n+1-2n+1 |
3n+2-2n+2 |
=
1-(
| ||
3-2•(
|
1 |
3 |
2 |
3 |
∴Tn=c1+c2+…+cn
>
1 |
3 |
2 |
3 |
1 |
3 |
2 |
3 |
1 |
3 |
2 |
3 |
=
n |
3 |
1 |
3 |
| ||||
1-
|
=
n |
3 |
4 |
9 |
4 |
9 |
2 |
3 |
3n-4 |
9 |
∴Tn>
3n-4 |
9 |
点评:本题考查利用构造法求数列的通项公式,利用错位相减法求数列的前n项和,利用放缩法证明不等式.解题时要认真审题,仔细解答,注意转化化归思想的合理运用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目