题目内容
在数列{an}中,a![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_ST/1.png)
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_ST/3.png)
【答案】分析:(Ⅰ)由an•an-1=an-1-an,得
,由此推导出bn-bn-1=1,从而得到bn=n+2.
(Ⅱ)由
=
=
(
),利用错位相减法求出Tn=
[
-(
+
)],由此能够证明
.
解答:(本小题满分14分)
解:(Ⅰ)∵数列{an}中,a
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,bn=
(n∈N*),
∴当n=1时,
=3;
当n≥2时,由an•an-1=an-1-an,得
,
∴bn-bn-1=1,
∴数列{bn}是首项为3,公差为1的等差数列,
∴bn=n+2.
(Ⅱ)∵
=
=
(
),
∴Tn=
(1-
+
-
+
-
+…+
-
+
-![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/27.png)
=
[
-(
+
)],
∴Tn是关于变量n的增函数,当n趋近无穷大时,
的值趋近于0,
当n=1时,Tn取最小值
,故有
.
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意迭代法和裂顶求和法的合理运用.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/0.png)
(Ⅱ)由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/9.png)
解答:(本小题满分14分)
解:(Ⅰ)∵数列{an}中,a
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/11.png)
∴当n=1时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/12.png)
当n≥2时,由an•an-1=an-1-an,得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/13.png)
∴bn-bn-1=1,
∴数列{bn}是首项为3,公差为1的等差数列,
∴bn=n+2.
(Ⅱ)∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/17.png)
∴Tn=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/27.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/29.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/30.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/31.png)
∴Tn是关于变量n的增函数,当n趋近无穷大时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/32.png)
当n=1时,Tn取最小值
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/33.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102640452563663/SYS201311031026404525636018_DA/34.png)
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意迭代法和裂顶求和法的合理运用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目