题目内容
【题目】如图,已知抛物线C顶点在坐标原点,焦点F在Y轴的非负半轴上,点是抛物线上的一点.
(1)求抛物线C的标准方程
(2)若点P,Q在抛物线C上,且抛物线C在点P,Q处的切线交于点S,记直线 MP,MQ的斜率分别为k1,k2,且满足,当P,Q在C上运动时,△PQS的面积是否为定值?若是,求出△PQS的面积;若不是,请说明理由.
【答案】(1);(2)定值4
【解析】
(1)设出抛物线方程,将M坐标代入,计算方程,即可。(2)设出直线PQ的方程,结合得到,计算S的坐标,结合点到直线距离公式,计算所求三角形高,结合直线截抛物线所得弦长,计算PQ,计算面积,即可。
(1)设抛物线的方程为将M(-2,1)点坐标代入方程中,解得
(2)设,设直线PQ的方程为,代入抛物线方程,得到,则,结合,而
则,代入,得到所以
,解得
过P点的切线斜率为,过Q切线斜率为,则PS的方程为,QS的方程为,联解这两个方程,得到S的坐标为,故点S的直线PQ的距离为,而PQ的长度为,故面积为
,故为定值。
【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15-65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
年龄 | |||||
支持“延迟退休”的人数 | 15 | 5 | 15 | 28 | 17 |
(1)由以上统计数据填2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;
45岁以下 | 45岁以上 | 总计 | |
支持 | |||
不支持 | |||
总计 |
参考数据:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,其中.
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动、现从这8人中随机抽2人.记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 (单位:千元)对年销售量 (单位: )和年利润 (单位:千元)的影响.对近年的年宣传费 和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.
表中 , .附:对于一组数据 , , , ,其回归直线 的斜率和截距的最小二乘法估计分别为 , .
(1)根据散点图判断, 与 在哪一个适宜作为年销售量 关于年宣传费 的回归方程类型?(给出判断即可,不必说明理由)
(2)根据1小问的判断结果及表中数据,建立 关于 的回归方程;
(3)已知这种产品的年利润 与 的关系为 .根据2小问的结果回答下列问题:
①2年宣传费 时,年销售量及年利润的预报值是多少?
②3年宣传费为何值时,年利润的预报值最大?