题目内容
【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1.
(Ⅰ)若直线PB与CD所成角的大小为,求BC的长;
(Ⅱ)求二面角B-PD-A的余弦值.
【答案】(1)2(2)
【解析】试题分析:(1)以为单位正交基底,建立空间直角坐标系.设,则,利用空间向量夹角余弦公式列方程求解即可;(2)分别求出平面PBD与平面PAD的一个法向量,根据空间向量夹角余弦公式,可得结果.
试题解析:以为单位正交基底,建立如图所示的空间直角坐标系A-xyz.
因为AP=AB=AD=1,所以A(0,0,0),B(1,0,0),D(0,1,0),P(0,0,1).设C(1,y,0),则=(1,0,-1),=(-1,1-y,0). …………………2分
因为直线PB与CD所成角大小为,
所以|cos<,>|=||=,
即=,解得y=2或y=0(舍),
所以C(1,2,0),所以BC的长为2.
(2)设平面PBD的一个法向量为n1=(x,y,z).
因为=(1,0,-1),=(0,1,-1),
则即
令x=1,则y=1,z=1,所以n1=(1,1,1).
因为平面PAD的一个法向量为n2=(1,0,0),
所以cos<n1,n2>==,
所以,由图可知二面角B-PD-A的余弦值为.
【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
租用单车数量(千辆) | 2 | 3 | 4 | 5 | 8 |
每天一辆车平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注: ,称为相应于点的残差(也叫随机误差));
租用单车数量 (千辆) | 2 | 3 | 4 | 5 | 8 | |
每天一辆车平均成本 (元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 |
②分别计算模型甲与模型乙的残差平方和及,并通过比较的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).