题目内容
设函数y=f(x)是定义在(0,+∞)上的函数,并且满足下面三个条件:
①对正数x、y都有f(xy)=f(x)+f(y);
②当x>1时,f(x)<0;
③f(3)=-1
(I)求f(1)和f(
)的值;
(II)如果不等式f(x)+f(2-x)<2成立,求x的取值范围.
①对正数x、y都有f(xy)=f(x)+f(y);
②当x>1时,f(x)<0;
③f(3)=-1
(I)求f(1)和f(
1 | 9 |
(II)如果不等式f(x)+f(2-x)<2成立,求x的取值范围.
分析:(I)对于任意的x,y∈(0,+∞),f(x•y)=f(x)+f(y),令x=y=1,x=y=3,即可求得f(1)、f(
)的值;且当x>1时,f(x)<0,根据函数单调性的定义讨论函数的单调性.
(II)f(x)+f(2-x)=f[x(2-x)],根据函数的单调性把函数值不等式转化为自变量不等式,解不等式即可求得结果.
1 |
9 |
(II)f(x)+f(2-x)=f[x(2-x)],根据函数的单调性把函数值不等式转化为自变量不等式,解不等式即可求得结果.
解答:解:(I)∵函数y=f(x)是定义在(0,+∞)上的函数,
对正数x、y都有f(xy)=f(x)+f(y),
∴令x=y=1,得f(1)=0.
而f(9)=f(3)+f(3)=-1-1=-2 且f(9)+f(
)=f(1)=0,
得f(
)=2.
(II)设0<x1<x2<+∞,由条件(1)可得f(x2)-f(x1)=f(
),
因
>1,由(2)知f(
)<0,
所以f(x2)<f(x1),
即f(x)在R+上是递减的函数.
由条件(1)及(I)的结果得:f[x(2-x)]<f(
),
由函数f(x)在R+上的递减性,得:
,
由此解得x的范围是(1-
,1+
).
对正数x、y都有f(xy)=f(x)+f(y),
∴令x=y=1,得f(1)=0.
而f(9)=f(3)+f(3)=-1-1=-2 且f(9)+f(
1 |
9 |
得f(
1 |
9 |
(II)设0<x1<x2<+∞,由条件(1)可得f(x2)-f(x1)=f(
x2 |
x1 |
因
x2 |
x1 |
x2 |
x1 |
所以f(x2)<f(x1),
即f(x)在R+上是递减的函数.
由条件(1)及(I)的结果得:f[x(2-x)]<f(
1 |
9 |
由函数f(x)在R+上的递减性,得:
|
由此解得x的范围是(1-
2
| ||
3 |
2
| ||
3 |
点评:考查利用函数单调性的定义探讨抽象函数的单调性问题,对于解决抽象函数的一般采用赋值法,求某些点的函数值和证明不等式等,体现了转化的思想.
练习册系列答案
相关题目