题目内容

【题目】已知函数f(x)=ex+ax+b(a,b∈R)在x=ln2处的切线方程为y=x﹣2ln2. (Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若k为差数,当x>0时,(k﹣x)f'(x)<x+1恒成立,求k的最大值(其中f'(x)为f(x)的导函数).

【答案】解:(Ⅰ)f'(x)=ex+a,由已知得f'(ln2)=1,故eln2+a=1,解得a=﹣1. 又f(ln2)=﹣ln2,得eln2﹣ln2+b=﹣ln2,解得b=﹣2,
∴f(x)=ex﹣x﹣2,则f'(x)=ex﹣1,
当x<0时,f'(x)<0;当x>0时,f'(x)>0,
∴f(x)的单调区间递增区间为(0,+∞),递减区间为(﹣∞,0);
(Ⅱ)由已知(k﹣x)f'(x)<x+1,及f'(x)=ex﹣1,
整理得 在x>0时恒成立.

当x>0时,ex>0,ex﹣1>0;
由(Ⅰ)知f(x)=ex﹣x﹣2在(0,+∞)上为增函数,
又f(1)=e﹣3<0,f(2)=e2﹣4>0,
∴存在x0∈(1,2)使得 ,此时
当x∈(0,x0)时,g'(x)<0;当x∈(x0 , +∞)时,g'(x)>0

故整数k的最大值为2
【解析】(Ⅰ)求出原函数的导函数,由f'(ln2)=1求导a值,再由f(ln2)=﹣ln2求得b值,代入原函数的导函数,再由导函数的符号与原函数单调性间的关系确定原函数的单调区间;(Ⅱ)把当x>0时,(k﹣x)f'(x)<x+1恒成立,转化为 在x>0时恒成立.令 ,利用导数求其最小值得答案.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的最大(小)值与导数的理解,了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网