题目内容
(2011•宁波模拟)已知:圆x2+y2=1过椭圆
+
=1(a>b>0)的两焦点,与椭圆有且仅有两个公共点:直线y=kx+m与圆x2+y2=1相切,与椭圆
+
=1相交于A,B两点记λ=
•
,且
≤λ≤
.
(Ⅰ)求椭圆的方程;
(Ⅱ)求k的取值范围;
(Ⅲ)求△OAB的面积S的取值范围.
x2 |
a2 |
y2 |
b2 |
x2 |
a2 |
y2 |
b2 |
OA |
OB |
2 |
3 |
3 |
4 |
(Ⅰ)求椭圆的方程;
(Ⅱ)求k的取值范围;
(Ⅲ)求△OAB的面积S的取值范围.
分析:(Ⅰ)欲求椭圆的方程,只需求出a,b的值,因为圆x2+y2=1过椭圆
+
=1(a>b>0)的两焦点,可求出a,因为圆x2+y2=1与椭圆有且仅有两个公共点,可求出b,椭圆的方程可知.
(Ⅱ)因为直线y=kx+m与圆x2+y2=1相切,可把m用k表示,再让直线方程与椭圆方程联立,把λ用k表示,根据λ的范围,就可求出k的范围.
(Ⅲ)因为△OAB的面积S=
|AB|•d,把|AB|用k表示,d=1,这样,S就可用含k的式子表示了,再把(2)中求出的k的范围代入,就可得到△OAB的面积S的取值范围.
x2 |
a2 |
y2 |
b2 |
(Ⅱ)因为直线y=kx+m与圆x2+y2=1相切,可把m用k表示,再让直线方程与椭圆方程联立,把λ用k表示,根据λ的范围,就可求出k的范围.
(Ⅲ)因为△OAB的面积S=
1 |
2 |
解答:解;(Ⅰ)由题意知,椭圆的焦距2c=2∴c=1
又∵圆x2+y2=1与椭圆有且仅有两个公共点,∴b=1,∴a=
∴圆的方程为
+y2=1
(Ⅱ)∵直线y=kx+m与圆x2+y2=1相切,∴原点O到直线的距离
=1,即m2=k2+1
把直线y=kx+m代入椭圆
+y2=1,可得(1+2k2)x2+4kmx+2m2-2=0
设A(x1,y1),B(x1,y2),则
λ=
•
=x1x2+y1y2=(1+k2)x1x2+km(x1+x2)+m2
=(1+k2)
-
+m2
∵
≤λ≤
,∴
≤
≤
,解得,
≤k2≤1
∴k的取值范围是[-1,-
]∪[
,1];
(Ⅲ)|AB|2=(x1-x2)2+(y1-y2)2=(1+k2)(x1-x2)2
=(1+k2)[(-
)2-4
]=(1+k2)[
-
]
=(1+k2)
=2-
S△OAB2=
|AB|2×1=
(2-
)
∵
≤k2≤1,∴
≤
≤
∴
≤2-
≤
,∴
≤
(2-
)≤
即
≤S△OAB2=≤
∴
≤S△OAB≤
∴△OAB的面积S的取值范围为[
,
]
又∵圆x2+y2=1与椭圆有且仅有两个公共点,∴b=1,∴a=
2 |
∴圆的方程为
x2 |
2 |
(Ⅱ)∵直线y=kx+m与圆x2+y2=1相切,∴原点O到直线的距离
|m| | ||
|
把直线y=kx+m代入椭圆
x2 |
2 |
设A(x1,y1),B(x1,y2),则
|
λ=
OA |
OB |
=(1+k2)
2(m2-1) |
2k2+1 |
4k2m2 |
2k2+1 |
∵
2 |
3 |
3 |
4 |
2 |
3 |
k2 +1 |
2k2+1 |
3 |
4 |
1 |
2 |
∴k的取值范围是[-1,-
| ||
2 |
| ||
2 |
(Ⅲ)|AB|2=(x1-x2)2+(y1-y2)2=(1+k2)(x1-x2)2
=(1+k2)[(-
4km |
2k2+1 |
2(m2-1) |
2k2+1 |
16k2(k2+1) |
(2k2+1)2 |
8k2 |
2k2+1 |
=(1+k2)
8k2 |
(2k2+1)2 |
2 |
(2k2+1)2 |
S△OAB2=
1 |
4 |
1 |
4 |
2 |
(2k2+1)2 |
∵
1 |
2 |
2 |
9 |
2 |
(2k2+1)2 |
1 |
2 |
∴
3 |
2 |
2 |
(2k2+1)2 |
16 |
9 |
3 |
8 |
1 |
4 |
2 |
(2k2+1)2 |
4 |
9 |
即
3 |
8 |
4 |
9 |
∴
| ||
4 |
2 |
3 |
∴△OAB的面积S的取值范围为[
| ||
4 |
2 |
3 |
点评:本题考查了椭圆方程的求法,以及椭圆与直线的位置关系的判断.做题时要细心.
练习册系列答案
相关题目