题目内容

(2012•邯郸模拟)已知函数f(x)=2cosx•sin(x-
π
6
)-
1
2
].
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c且c=
3
,角C满足f(C)=0,若sinB=2sinA,求a、b的值.
分析:(Ⅰ)先化简函数f(x),再求函数的最小值和最小正周期;
(Ⅱ)先求C,再利用余弦定理、正弦定理,建立方程,即可求a、b的值.
解答:解:(Ⅰ)f(x)=2cosx•sin(x-
π
6
)-
1
2
=
3
sinxcosx-cos2x-
1
2
=
3
2
sin2x-
1
2
cos2x
-1
=sin(2x-
π
6
)
-1
∴f(x)的最小值是-2,最小正周期为T=
2
=π;
(Ⅱ)f(C)=sin(2C-
π
6
)
-1=0,则sin(2C-
π
6
)
=1
∵0<C<π,∴C=
π
3

∵sinB=2sinA,∴由正弦定理可得b=2a①
c=
3
,∴由余弦定理可得c2=a2+b2-ab=3②
由①②可得a=1,b=2.
点评:本题考查三角函数的化简,三角函数的性质,考查余弦定理、正弦定理的运用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网