题目内容

23、已知定义在实数集R上的函数f(x),其导函数为f'(x),满足两个条件:①对任意实数x,y都有f(x+y)=f(x)+f(y)+2xy成立;②f'(0)=2.
(1)求函数的f(x)的表达式;
(2)对任意x1,x2∈[-1,1],求证:|f(x1)-f(x2)|≤4|x1-x2|.
分析:(1)令x=y=0,求出f(0),将f(x+y)=f(x)+f(y)+2xy中x固定,对y求导,令y=0得f′(x)=2x+2,从而求出函数的f(x)的表达式;
(2)将函数解析式代入可得|f(x1)-f(x2)|=|(x12-x22)+2(x1-x2)|=|x1-x2||x1+x2+2|≤|x1-x2|||x1|+|x2|+2|≤|x1-x2|(1+1+2)=4|x1-x2|,即可得到结论.
解答:解:(1)∵f(x+y)=f(x)+f(y)+2xy(x,y∈R),
令x=y=0,得f(0)=0.将f(x+y)=f(x)+f(y)+2xy中x固定,对y求导,
得f′(x+y)•(x+y)′=f′(y)+2x,令y=0得:f′(x)•1=f′(0)+2x,
∴f′(x)=2x+2,设f(x)=x2+2x+c.又f(0)=0,∴c=0.
∴f(x)=x2+2x.…(6分)
(2)|f(x1)-f(x2)|=|(x12-x22)+2(x1-x2)|
=|x1-x2||x1+x2+2|≤|x1-x2|||x1|+|x2|+2|≤|x1-x2|(1+1+2)=4|x1-x2|.
∴|f(x1)-f(x2)|≤4|x1-x2|.…(10分)
点评:本题主要考查了抽象函数及其应用,同时考查了已知导函数求原函数和绝对值不等式的运用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网