题目内容
已知双曲线C的方程为![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_ST/0.png)
A.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_ST/1.png)
B.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_ST/2.png)
C.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_ST/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_ST/4.png)
D.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_ST/5.png)
【答案】分析:由题设条件推导出|F2P|=b,|QF1|=2a-
,|A1A2|=2a,由PF2,A1A2,QF1依次成等差数列,知b,2a,2a-
依次成等差数列,由此能求出离心率e.
解答:
解:由题设知双曲线C的方程为
的一条渐近线方程l:y=
,
∵右焦点F(c,0),∴F2P⊥l,
∴|F2P|=
=b,
∵|F2Q|⊥x轴,
,解得|F2Q|=
,
∴|QF1|=2a-
,
∵|A1A2|=2a,PF2,A1A2,QF1依次成等差数列,
∴b,2a,2a-
依次成等差数列,
∴4a=b+2a+
,
∴2=
+
,即
,
解得e=
.
故选A.
点评:本题考查双曲线的离心率的求法,解题时要认真审题,注意点到直线的距离公式的灵活运用.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_DA/1.png)
解答:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_DA/images2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_DA/3.png)
∵右焦点F(c,0),∴F2P⊥l,
∴|F2P|=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_DA/4.png)
∵|F2Q|⊥x轴,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_DA/6.png)
∴|QF1|=2a-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_DA/7.png)
∵|A1A2|=2a,PF2,A1A2,QF1依次成等差数列,
∴b,2a,2a-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_DA/8.png)
∴4a=b+2a+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_DA/9.png)
∴2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_DA/12.png)
解得e=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123542220275948/SYS201310251235422202759008_DA/13.png)
故选A.
点评:本题考查双曲线的离心率的求法,解题时要认真审题,注意点到直线的距离公式的灵活运用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目