题目内容
设A(x1,y1),B(x2,y2)是函数f(x)=![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_ST/0.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_ST/1.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_ST/2.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_ST/3.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_ST/4.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_ST/5.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_ST/6.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_ST/7.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_ST/8.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_ST/9.png)
(1)求点M的纵坐标值;
(2)求s2,s3,s4及Sn;
(3)已知
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_ST/10.png)
【答案】分析:(1)由
=
(
+
)知M为线段AB的中点,由M的横坐标为
得x1+x2=1,由此可求得y1+y2,从而可得点M的纵坐标;
(2)根据Sn=f(
)+f(
)+…+f(
),分别令n=2,3,4即可求得s2,s3,s4;由(1)知,由
,得f(
)+f(
)=1,从而可求得2Sn;
(3)先表示出an,利用裂项相消法求得Tn,分离出参数λ后转化为求函数的最值可解决,利用基本不等式可得最值;
解答:解:(1)依题意,由
=
(
+
)知M为线段AB的中点,
又因为M的横坐标为
,A(x1,y1),B(x2,y2),
∴
=
,即x1+x2=1,
∴
=1+log21=1,
所以
=
,
即点M的横坐标为定值
;
(2)
=
,
=
+
=1,
=
+
+
=
,
由(1)知,由
,得f(
)+f(
)=1,
又Sn=f(
)+f(
)+…+f(
)=f(
)+f(
)+…+f(
),
所以2Sn=(n-1)×1,即Sn=
(n∈N*且n≥2);
(3)当n≥2时,
=
,
又n=1时,
也适合,
所以
,
∴
=4(![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/47.png)
)
=4(
)=
(n∈N*),
由
≤λ
恒成立(n∈N*)推得λ≥
,
而
=![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/55.png)
=
(当且仅当n=2取等号),
∴
,∴λ的最小正整数为1.
点评:本题考查数列与不等式、数列与向量的综合,考查恒成立问题,考查转化思想,综合性强,难度较大.
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/0.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/1.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/2.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/3.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/4.png)
(2)根据Sn=f(
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/5.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/6.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/7.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/8.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/9.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/10.png)
(3)先表示出an,利用裂项相消法求得Tn,分离出参数λ后转化为求函数的最值可解决,利用基本不等式可得最值;
解答:解:(1)依题意,由
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/11.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/12.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/13.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/14.png)
又因为M的横坐标为
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/15.png)
∴
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/16.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/17.png)
∴
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/18.png)
所以
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/19.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/20.png)
即点M的横坐标为定值
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/21.png)
(2)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/22.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/23.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/24.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/25.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/26.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/27.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/28.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/29.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/30.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/31.png)
由(1)知,由
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/32.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/33.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/34.png)
又Sn=f(
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/35.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/36.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/37.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/38.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/39.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/40.png)
所以2Sn=(n-1)×1,即Sn=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/41.png)
(3)当n≥2时,
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/42.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/43.png)
又n=1时,
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/44.png)
所以
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/45.png)
∴
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/46.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/47.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/48.png)
=4(
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/49.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/50.png)
由
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/51.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/52.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/53.png)
而
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/54.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/55.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/56.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/57.png)
∴
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103174818352643981/SYS201311031748183526439022_DA/58.png)
点评:本题考查数列与不等式、数列与向量的综合,考查恒成立问题,考查转化思想,综合性强,难度较大.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目