题目内容

已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-x,-3-y)

(1)若点A,B,C能构成三角形,求x,y应满足的条件;
(2)若△ABC为等腰直角三角形,且∠B为直角,求x,y的值.
分析:(1)点A,B,C能构成三角形,即三点不共线,再由向量不共线的条件得到关于x,y的不等式,即所求的x,y应满足的条件;
(2)△ABC为等腰直角三角形,且∠B为直角,可得AB⊥BC且,|AB|=|BC|,转化为坐标表示,得到方程求出x,y的值
解答:解:(1)若点A,B,C能构成三角形,则这三点不共线,
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-x,-3-y)

AB
=(3,1),
AC
=(2-x,1-y),又
AB
AC
不共线
∴3(1-y)≠2-x,
∴x,y满足的条件为3y-x≠1
(2)∵
AB
=(3,1),
BC
=(-x-1,-y),若∠B为直角,则AB⊥BC,
∴3(-x-1)-y=0,
又|AB|=|BC|,∴(x+1)2+y2=10,
再由3(-x-1)-y=0,解得
x=0
y=-3
x=-2
y=3
点评:本题考查数量积判断两个向量垂直,解题的关键是熟练掌握向量的数量积公式,向量垂直的条件与向量共线的条件,将位置关系转化为方程或不等式,本题考查了推理判断的能力及向量运算的能力,考查了方程的思想,转化的思想
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网