题目内容
计算下列各式:
(Ⅰ)(lg2)2+lg5•lg20-1;
(Ⅱ) (
×
)6+(
)
-4(
)-
-
×80.25-(-2005)0.
(Ⅰ)(lg2)2+lg5•lg20-1;
(Ⅱ) (
3 | 2 |
3 |
2
|
4 |
3 |
16 |
49 |
1 |
2 |
4 | 2 |
分析:(Ⅰ)利用对数的运算性质,把(lg2)2+lg5•lg20-1等价转化为lg22+(1-lg2)(1+lg2)-1,由此能够求出结果.
(Ⅱ)利用有理数指数幂的运算性质,把 (
×
)6+(
)
-4(
)-
-
×80.25-(-2005)0等价转化(2
×3
)6+(2
×2
)
-4×
-2
×2
-1,由此能求出结果.
(Ⅱ)利用有理数指数幂的运算性质,把 (
3 | 2 |
3 |
2
|
4 |
3 |
16 |
49 |
1 |
2 |
4 | 2 |
1 |
3 |
1 |
2 |
1 |
2 |
1 |
4 |
4 |
3 |
7 |
4 |
1 |
4 |
3 |
4 |
解答:解:(Ⅰ)(lg2)2+lg5•lg20-1
=lg22+(1-lg2)(1+lg2)-1
=lg22+1-lg22-1=0.
(Ⅱ) (
×
)6+(
)
-4(
)-
-
×80.25-(-2005)0
=(2
×3
)6+(2
×2
)
-4×
-2
×2
-1
=22×33+2-7-2-1
=100.
=lg22+(1-lg2)(1+lg2)-1
=lg22+1-lg22-1=0.
(Ⅱ) (
3 | 2 |
3 |
2
|
4 |
3 |
16 |
49 |
1 |
2 |
4 | 2 |
=(2
1 |
3 |
1 |
2 |
1 |
2 |
1 |
4 |
4 |
3 |
7 |
4 |
1 |
4 |
3 |
4 |
=22×33+2-7-2-1
=100.
点评:本题考查对数的运算性质和有理数指数幂的运算性质,是基础题.解题时要认真审题,仔细解答.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目