题目内容
在平面内有DABC和点O,若,则点O是DABC的( )
A.重心 | B.垂心 | C.内心 | D.外心 |
B
解析试题分析:∵∴;
∴=0,∴OB⊥AC,
同理可得OA⊥BC,∴点O是△ABC的三条高的交点,故选B。
考点:平面向量的数量积,向量垂直的条件。
点评:简单题,两向量垂直,它们的数量积为0.
已知、是平面向量,若,,则与的夹角是( )
A. | B. | C. | D. |
已知向量,满足||="2," | |=l,且(+)⊥(),则与的夹角为
A. | B. | C. | D. |
平面向量与的夹角为,=(2,0),="1" 则=( )
A. | B. | C.4 | D.12 |
若向量满足,且,则向量的夹角为
A.30° | B.45° | C.60° | D.120° |
已知,,,点C在内, ,若=2m+m(),则=( )
A.1 | B.2 | C. | D.4 |