题目内容

(Ⅰ)30°(Ⅱ)

解析试题分析:(Ⅰ) 延长AD,FE交于Q.
因为ABCD是矩形,所以
BC∥AD,
所以∠AQF是异面直线EF与BC所成的角.
在梯形ADEF中,因为DE∥AF,AF⊥FE,AF=2,DE=1得
∠AQF=30°.
(Ⅱ) 方法一:
设AB=x.取AF的中点G.由题意得
DG⊥AF.
因为平面ABCD⊥平面ADEF,AB⊥AD,所以
AB⊥平面ADEF,
所以
AB⊥DG.
所以
DG⊥平面ABF.
过G作GH⊥BF,垂足为H,连结DH,则DH⊥BF,
所以∠DHG为二面角A-BF-D的平面角.
在直角△AGD中,AD=2,AG=1,得
DG=
在直角△BAF中,由=sin∠AFB=,得

所以
GH=
在直角△DGH中,DG=,GH=,得
DH=
因为cos∠DHG=,得
x=
所以  AB=
方法二:设AB=x.
以F为原点,AF,FQ所在的直线分别为x轴,y轴建立空间直角坐标系Fxyz.则
F(0,0,0),A(-2,0,0),E(,0,0),D(-1,,0),B(-2,0,x),
所以 =(1,-,0),=(2,0,-x).
因为EF⊥平面ABF,所以平面ABF的法向量可取=(0,1,0).
=(x1,y1,z1)为平面BFD的法向量,则     

所以,可取=(,1,).
因为cos<>=,得
x=
所以
AB=
考点:异面直线所成角  二面角
点评:本题主要考查空间点、线、面位置关系,异面直线所成角、二面角等基础知识,空间向量的应用,同时考查空间想象能力和运算求解能力。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网