ÌâÄ¿ÄÚÈÝ
(±¾Ìâ18·Ö)ÔÚR+Éϵĵݼõº¯Êýf(x)ͬʱÂú×㣺(1)µ±ÇÒ½öµ±xÎM R+ʱ£¬º¯ÊýÖµf(x)µÄ¼¯ºÏΪ[0, 2]£»(2)f()=1£»(3)¶ÔMÖеÄÈÎÒâx1¡¢x2¶¼ÓÐf(x1•x2)= f(x1)+ f(x2)£»(4)y=f(x)ÔÚMÉϵķ´º¯ÊýΪy=f¨C1(x)£®
(1)ÇóÖ¤£ºÎM£¬µ«ÏM£»
(2)ÇóÖ¤£ºf¨C1(x1)• f¨C1(x2)= f¨C1(x1+x2)£»
(3)½â²»µÈʽ£ºf¨C1(x2¨Cx)• f¨C1(x¨C1)¡Ü£®
(1)Ö¤Ã÷£ºÒòΪÎM£¬ÓÖ=´£¬f()=1£¬
ËùÒÔf()=f(´)=f()+f()=2Î[0, 2]£¬ËùÒÔÎM£¬¡¡¡¡¡¡¡¡¡¡¡3·Ö
ÓÖÒòΪf()=f(´)=f()+f()=3Ï[0, 2]£¬ËùÒÔÏM£»¡¡¡¡¡¡¡¡¡¡5·Ö
(2)ÒòΪy=f(x)ÔÚMÉϵݼõ£¬ËùÒÔy=f(x)ÔÚMÓз´º¯Êýy=f ¨C1(x)£¬xÎ[0, 2]
ÈÎÈ¡x1¡¢x2Î[0, 2]£¬Éèy1=f ¨C1(x1)£¬y2=f ¨C1(x2)£¬
ËùÒÔx1=f(y1)£¬x2=f(y2) (y1¡¢y2ÎM)
ÒòΪx1+x2=f(y1)+f(y2)=f(y1y2)£¬¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡7·Ö
ËùÒÔy1y2=f ¨C1(x1+x2)£¬ÓÖy1y2= f ¨C1(x1)f ¨C1(x2)£¬
ËùÒÔ£ºf ¨C1(x1)• f ¨C1(x2)= f ¨C1(x1+x2)£»¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡10·Ö
(3)ÒòΪy=f(x)ÔÚMÉϵݼõ£¬ËùÒÔf ¨C1(x)ÔÚ[0, 2]ÉÏÒ²µÝ¼õ£¬
f¨C1(x2¨Cx)• f¨C1(x¨C1)¡ÜµÈ¼ÛÓÚ£ºf ¨C1(x2¨Cx+x¨C1)¡Üf ¨C1(1)¡¡¡¡¡¡¡¡¡¡¡¡¡11·Ö
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡14·Ö
¼´£º¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡17·Ö
ËùÒÔ¡Üx¡Ü2¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡18·Ö