题目内容

已知△ABC中,内角A、B、C的对边的边长为a、b、c,且bcosC=(2a-c)cosB,则y=cos2A+cos2C的最小值为
1
2
1
2
分析:△ABC中,由正弦定理可求得cosB=
1
2
,从而求得 B=
π
3
,A+C=
3
.利用两角和差的正弦公式,二倍角公式化简 y=cos2A+cos2C=1-
1
2
sin(2A-
π
6
),再由
-
π
6
<2A-
π
6
6
,求得-
1
2
<sin(2A-
π
6
)≤1,由此可得y的最小值.
解答:解:△ABC中,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB.
因为0<A<π,所以sinA≠0,∴cosB=
1
2
,∴B=
π
3
,A+C=
3

∴2A+2C=
3
,则y=cos2A+cos2C=
1+cos2A
2
+
1+cos2C
2
=
1+cos2A
2
+
1+cos(
3
-2A)
2
=1+
1
2
[
1
2
cos2A-
3
2
sin2A]
=1-
1
2
sin(2A-
π
6
).
∵0<2A<
3
,∴-
π
6
<2A-
π
6
6
,则-
1
2
<sin(2A-
π
6
)≤1,
故y=cos2A+cos2C的最小值为 1-
1
2
=
1
2

故答案为
1
2
点评:本题主要考查正弦定理的应用,两角和差的正弦公式,二倍角公式以及诱导公式的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网