题目内容

从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.
(1)求ξ的分布列和ξ的数学期望;
(2)求“所选3人中女生人数ξ≤1”的概率.
分析:(1)本题是一个超几何分步,随机变量ξ表示所选3人中女生的人数,ξ可能取的值为0,1,2,结合变量对应的事件和超几何分布的概率公式,写出变量的分布列和数学期望.
(2)所选3人中女生人数ξ≤1,表示女生有1个人,或者没有女生,根据第一问做出的概率值,根据互斥事件的概率公式得到结果.
解答:解:(1)由题意知本题是一个超几何分步,
随机变量ξ表示所选3人中女生的人数,ξ可能取的值为0,1,2.
P(ξ=k)=
C
k
2
C
3-k
4
C
3
6
, k=0,  1,  2

∴ξ的分布列为
精英家教网
∴ξ的数学期望为Eξ=0×
1
5
+1×
3
5
+2×
1
5
=1

(2)由(1)知“所选3人中女生人数ξ≤1”的概率为P(ξ≤1)=P(ξ=0)+P(ξ=1)=
4
5
点评:本小题考查离散型随机变量分布列和数学期望,考查超几何分步,考查互斥事件的概率,考查运用概率知识解决实际问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网