题目内容
今有一长2米宽1米的矩形铁皮,如图,在四个角上分别截去一个边长为x米的正方形后,沿虚线折起可做成一个无盖的长方体形水箱(接口连接问题不考虑).
(Ⅰ)求水箱容积的表达式f(x),并指出函数f(x)的定义域;
(Ⅱ)若要使水箱容积不大于4x3立方米的同时,又使得底面积最大,求x的值.
(Ⅰ)求水箱容积的表达式f(x),并指出函数f(x)的定义域;
(Ⅱ)若要使水箱容积不大于4x3立方米的同时,又使得底面积最大,求x的值.
分析:(Ⅰ)确定长方体形水箱高为x米,底面矩形长为(2-2x)米,宽(1-2x)米,即可得到该水箱容积为f(x)=(2-2x)(1-2x)x=4x3-6x2+2x,根据长、宽、高为正数,可确定所求函数f(x)定义域;
(Ⅱ)根据水箱容积不大于4x3立方米,构建不等式,确定函数的定义域,再利用底面积为S(x)=(2-2x)(1-2x)=4x2-6x+2,结合定义域,可得结论.
(Ⅱ)根据水箱容积不大于4x3立方米,构建不等式,确定函数的定义域,再利用底面积为S(x)=(2-2x)(1-2x)=4x2-6x+2,结合定义域,可得结论.
解答:解:(Ⅰ)由已知该长方体形水箱高为x米,底面矩形长为(2-2x)米,宽(1-2x)米.
∴该水箱容积为f(x)=(2-2x)(1-2x)x=4x3-6x2+2x.…(4分)
其中正数x满足
∴0<x<
.
∴所求函数f(x)定义域为{x|0<x<
}.…(6分)
(Ⅱ)由f(x)≤4x3,得x≤0或x≥
,
∵定义域为{x|0<x<
},∴
≤x<
.…(8分)
此时的底面积为S(x)=(2-2x)(1-2x)=4x2-6x+2(x∈[
,
)).
由S(x)=4(x-
)2-
,…(10分)
可知S(x)在[
,
)上是单调减函数,
∴x=
.
即要使水箱容积不大于4x3立方米的同时,又使得底面积最大的x是
.…(12分)
∴该水箱容积为f(x)=(2-2x)(1-2x)x=4x3-6x2+2x.…(4分)
其中正数x满足
|
1 |
2 |
∴所求函数f(x)定义域为{x|0<x<
1 |
2 |
(Ⅱ)由f(x)≤4x3,得x≤0或x≥
1 |
3 |
∵定义域为{x|0<x<
1 |
2 |
1 |
3 |
1 |
2 |
此时的底面积为S(x)=(2-2x)(1-2x)=4x2-6x+2(x∈[
1 |
3 |
1 |
2 |
由S(x)=4(x-
3 |
4 |
1 |
4 |
可知S(x)在[
1 |
3 |
1 |
2 |
∴x=
1 |
3 |
即要使水箱容积不大于4x3立方米的同时,又使得底面积最大的x是
1 |
3 |
点评:本题考查函数模型的构建,考查函数的最值,利用长方体的体积公式,确定函数是关键.
练习册系列答案
相关题目