题目内容
【题目】(1)把6个不同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法?
(2)把6个不同的小球放入4个相同的箱子中,每个箱子都不空,共有多少种放法?
(3)把6个相同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法?
(4)把6个相同的小球放入4个相同的箱子中,每个箱子都不空,共有多少种放法?
【答案】(1)1560种(2)65种 (3)10种 (4)2种
【解析】
(1)6个不同的小球放入4个不同的箱子,每个箱子至少一个小球,先把6个小球分组,有两种分法,再放入4个不同的箱子,即可得到结论;
(2)6个不同的小球放入4个不同的箱子,每个箱子至少一个小球,先把6个小球分组,有两种分法,再放入4个相同的箱子,即可得到结论;
(3)6个相同的小球放入4个不同的箱子,每个箱子至少一个小球,利用插板法;
(4)把6个相同的小球放入4个相同的箱子中,每个箱子至少一个小球,故可以首先每个箱子放入个小球,还剩下个小球,则只有两种结果.
解:(1)6个不同的小球放入4个不同的箱子,每个箱子至少一个小球,先把6个小球分组,有两种分法:2、2、1、1;3、1、1、1;再放入4个不同的箱子,故不同的方法共有(种)
(2)6个不同的小球放入4个不同的箱子,每个箱子至少一个小球,先把6个小球分组,有两种分法:2、2、1、1;3、1、1、1;再放入4个相同的箱子,故不同的方法共有(种)
(3)6个相同的小球放入4个不同的箱子,每个箱子至少一个小球,则采用插板法,在个空中插入块板,则不同的方法共有(种)
(4)把6个相同的小球放入4个相同的箱子中,每个箱子至少一个小球,故可以首先每个箱子放入个小球,还剩下个小球,则这个小球,只有两种结果,即两个在一个箱子中,或两个小球分别在一个箱子中,故只有种放法.
【题目】为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算K2=8.01,附表如下:
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参照附表,得到的正确的结论是( )
A. 有99%以上的把握认为“喜欢乡村音乐与性别有关”
B. 有99%以上的把握认为“喜欢乡村音乐与性别无关”
C. 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别有关”
D. 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别无关”