题目内容
已知O(0,0)、A(3,4)、B(2,5),M(x,y)为△OAB内(含三角形的三边与顶点)的动点,则z=3x-2y的最大值是
1
1
.分析:先根据所给的可行域,利用几何意义求最值,z=3x-2y表示直线在y轴上的截距的一半,只需求出可行域直线在y轴上的截距最值即可.
解答:解:做可行域如图,画直线l:0=3x-2y (虚线),平移l,
直线z=3x-2y经过点B(3,4)时,z=3x-2y最得最小值,最小值是1.
故答案为:1.
直线z=3x-2y经过点B(3,4)时,z=3x-2y最得最小值,最小值是1.
故答案为:1.
点评:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.
练习册系列答案
相关题目