题目内容
已知函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913457780.png)
.
(1)当
时,判断
在
的单调性,并用定义证明;
(2)若对任意
,不等式
恒成立,求
的取值范围;
(3)讨论
零点的个数.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913457780.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913472483.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913488441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913504447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913519517.png)
(2)若对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913535424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913550607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913566337.png)
(3)讨论
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913504447.png)
(1)单调递减函数;(2)
;(3)当
或
时,
有1个零点.当
或
或
时,
有2个零点;当
或
时,
有3个零点.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913597504.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913597504.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913628511.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913504447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913660483.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913675425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913691494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913504447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913722589.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913753600.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913504447.png)
试题分析:(1)先根据条件化简函数式,根据常见函数的单调性及单调性运算法则,作出单调性的判定,再用定义证明;(2)将题中所给不等式具体化,转化为不等式恒成立问题,通过参变分离化为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913784689.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913800559.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913566337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913566337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913800559.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913972749.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913987452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914018729.png)
试题解析:(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913488441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914050386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914065717.png)
证明:设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914081522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240439140961292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914112871.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914128845.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914143851.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914081522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914190528.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914206505.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914221924.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914237748.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914237654.png)
故当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913488441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914065717.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913519517.png)
(2)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913550607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914502786.png)
变形为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914533789.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913784689.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914564943.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914705486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914720332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914736864.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913597504.png)
(3)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914814520.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914845782.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913972749.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240439149081298.png)
作
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043914939548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913987452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240439149543350.jpg)
由图像可得:
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913597504.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913628511.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913504447.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913660483.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913675425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913691494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913504447.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913722589.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913753600.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043913504447.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目