题目内容

已知α、β是三次函数f(x)=
1
3
x3+
1
2
ax2+2bx(a,b∈R)
的两个极值点,且α∈(0,1),β∈(1,2),则
b-2
a-1
的取值范围是______.
f′(x)=x2+ax+2b
∵α,β是f(x)的极值点,
所以α,β是x2+ax+2b=0的两个根
∴α+β=-a,αβ=2b
∵α∈(0,1),β∈(1,2),
∴1<α+β<3,0<αβ<2
∴1<-a<3,0<2b<2
-3<a<-1
0<b<1

作出不等式组∴
-3<a<-1
0<b<1
的可行域
b-2
a-1
表示可行域中的点与(1,2)连线的斜率
有图知,当当点为(-3,1)和(-1,0)时分别为斜率的最小、最大值
所以此时两直线的斜率分别是
2-1
1--3
=
1
4
2-0
1-(-1)
=1

故答案为(
1
4
,1)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网