题目内容

已知函数图象C′与C:y(x+a+1)=ax+a2+1关于直线y=x对称,且图象C′关于点(2,-3)对称,则a的值为(  )
分析:把已知函数变形,求出x,则原函数的反函数可求,整理后知反函数的图象的对称中心,由对称中心的坐标是(2,-3)可求a的值.
解答:解:由y(x+a+1)=ax+a2+1,得:x=
-ay-y+a2+1
y-a

所以原函数的反函数为:y=
-ax-x+a2+1
x-a
=
-(a+1)(x-a)-a+1
x-a
=
-a+1
x-a
-a-1

所以该函数图象关于(a,-a-1)中心对称,
又其关于(2,-3)对称,
所以a=2.
故选C.
点评:本题考查了函数反函数的求法,训练了函数对称中心的求解方法,考查了函数图象的平移变化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网