题目内容
(本小题共13分)
如图所示,正方形与矩形所在平面互相垂直,,点E为的中点。
(Ⅰ)求证:
(Ⅱ) 求证:
(Ⅲ)在线段AB上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由。
(1)根据三角形的中位线,那么可以// ,然后结合线面平行的判定定理可知结论。
(2)结合已知中正方形的心智,以及,结合线面垂直的性质定理得到线线垂直。
(3)
解析试题分析:(Ⅰ) , 点E为的中点,连接。
的中位线// ……2分
又
……4分
(II) 正方形中,
由已知可得:, …….6分
, …….7分
…….8分
(Ⅲ)由题意可得:,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则,
9分
设
10分
设平面的法向量为
则
得 11分
取是平面的一个法向量,而平面的一个法向量为 12分
要使二面角的大小为
而
解得:
当=时,二面角的大小为 13分
考点:空间中的线面平行和线线垂直以及二面角的求解
点评:解决平行和垂直的证明,一般要用到判定定理和性质定理,然后结合空间向量法来求解二面角,属于基础题。
练习册系列答案
相关题目