题目内容
如图,四棱锥的底面是平行四边形,,,分别是棱的中点.
(1)证明平面;
(2)若二面角P-AD-B为,
①证明:平面PBC⊥平面ABCD
②求直线EF与平面PBC所成角的正弦值.
(1)证明平面;
(2)若二面角P-AD-B为,
①证明:平面PBC⊥平面ABCD
②求直线EF与平面PBC所成角的正弦值.
(1)详见解析, (2)①详见解析,②
试题分析:(1)证明线面平行,一般利用线线平行进行证明.本题条件中的中点较多,所以取PB中点M,利用中位线性质找寻平行条件.因为F为PC中点,故MF//BC且MF=BC.由已知有BC//AD,BC=AD.又由于E为AD中点,因而MF//AE且MF=AE,故四边形AMFE为平行四边形,所以EF//AM,又AM平面PAB,而EF平面PAB,所以EF//平面PAB.,(2)①证明面面垂直,关键在一个面内找出另一平面的垂线.经分析BE平面PBC.这是因为通过计算可得BEPB, 又BC//AD,BEAD,从而BEBC,②求线面角,关键是找面的垂线,由①知BE平面PBC.所以EFB为直线EF与平面PBC所成的角,下面只需分别求出BE与EF的值即可.在三角形ABP中,可求得AM=,故EF=,又BE=1,故在直角三角形EBF中,所以,直线EF与平面PBC所成角的正弦值为
证明(1)如图取PB中点M,连接MF,AM.因为F为PC中点,故MF//BC且MF=BC.由已知有BC//AD,BC=AD.又由于E为AD中点,因而MF//AE且MF=AE,故四边形AMFE为平行四边形,所以EF//AM,又AM平面PAB,而EF平面PAB,所以EF//平面PAB.
(2)①连接PE,BE.因为PA=PD,BA=BD,而E为AD中点,故PEAD,BEAD,所以PEB为二面角P-AD-B的平面角.在三角形PAD中,由,可解得PE=2.在三角形ABD中,由,可解得BE=1.在三角形PEB中,PE="2," BE="1," ,由余弦定理,可解得PB=,从而,即BEPB,又BC//AD,BEAD,从而BEBC,因此BE平面PBC.又BE平面ABCD,所以平面PBC平面ABCD,②连接BF,由①知BE平面PBC.所以EFB为直线EF与平面PBC所成的角,由PB=,PA=,AB=得ABP为直角,而MB=PB=,可得AM=,故EF=,又BE=1,故在直角三角形EBF中,所以,直线EF与平面PBC所成角的正弦值为
练习册系列答案
相关题目