题目内容
已知命题p:方程x2+mx+1=0有两个不相等的实根;q:不等式4x2+4(m–2)x+1>0的解集为R;若p或q为真,p且q为假,求实数m的取值范围。
或
【解析】
试题分析:研究四种命题关系,首先研究各命题为真时的充要条件,因为方程x2+mx+1=0有两个不相等的实根,,所以Δ1=m2–4>0,m>2或m<–2;又因为不等式4x2+4(m–2)x+1>0的解集为R,所以Δ2=16(m–2)2–16<0, ∴1<m<3,其次研究复合命题真假性,确定简单命题真假性,因为p或q为真,p且q为假,所以p与q为一真一假,对于命题为假的情形,取命题为真时范围的补集,本题分两组求解,取其并集.
试题解析:解:因为方程x2+mx+1=0有两个不相等的实根,
所以Δ1=m2–4>0,∴m>2或m<–2
又因为不等式4x2+4(m–2)x+1>0的解集为R,
所以Δ2=16(m–2)2–16<0,∴1<m<3 .5分
因为p或q为真,p且q为假,所以p与q为一真一假,
(1)当p为真q为假时,
(2)当p为假q为真时,
综上所述得:m的取值范围是或 .10分
考点:四种命题关系,二次函数、二次方程、二次不等式之间关系
练习册系列答案
相关题目