题目内容
(1)已知cosα=4 |
5 |
5 |
13 |
(2)已知cos(
π |
4 |
3 |
5 |
17 |
12 |
7 |
4 |
sin2x+2sinxcosxtanx |
1-tanx |
(3)设cos(α-
β |
2 |
1 |
9 |
α |
2 |
2 |
3 |
π |
2 |
π |
2 |
分析:(1)先根据α,β的范围求得sinα和sin(α+β)进而根据两角和公式求得答案.
(2)先求得sin(x+
),进而求得tan(x+
),根据正切的两角和公式求得tanx,进而根据万能公式求得sin2x和cos2x,代入
中即可.
(3)先根据α,β的范围求得sin(α-
)和cos(
-β),进而根据两角和公式求得cos
,进而根据倍角公式求得cos(α+β).
(2)先求得sin(x+
π |
4 |
π |
4 |
sin2x+2sinxcosxtanx |
1-tanx |
(3)先根据α,β的范围求得sin(α-
β |
2 |
α |
2 |
α+β |
2 |
解答:解:(1)∵cosα=
,cos(α+β)=
,α,β为锐角,.
∴sinα=
=
,sin(α+β)=
=
∴sinβ=sin(α+β-α)=sin(α+β)cosα-cos(α+β)sinα=
×
+
×
=
(2)∵
π<x<
π
∴
<x+
<2π
∴sin(x+
)=-
=-
∴tan(x+
)=-
=
∴tanx=7
∴sin2x=
=
,cos2x=
=-
∴
=
=-
(3)∵
<α<π,0<β<
.
∴sin(α-
)=
=
,cos(
-β)=
=
∴cos
=cos(α-
-
+β)=cos(α-
)cos(
-β)+sin(α-
)sin(
-β)=-
×
+
×
=
∴cos(α+β)=2cos2
-1=-
4 |
5 |
5 |
13 |
∴sinα=
1-
|
3 |
5 |
1-
|
12 |
13 |
∴sinβ=sin(α+β-α)=sin(α+β)cosα-cos(α+β)sinα=
12 |
13 |
4 |
5 |
5 |
13 |
3 |
5 |
63 |
65 |
(2)∵
17 |
12 |
7 |
4 |
∴
5π |
3 |
π |
4 |
∴sin(x+
π |
4 |
1-
|
4 |
5 |
∴tan(x+
π |
4 |
4 |
3 |
1+tanx |
1-tanx |
∴tanx=7
∴sin2x=
2tanx |
1+tan 2x |
7 |
25 |
1-tan2x |
1+tan2x |
24 |
25 |
∴
sin2x+2sinxcosxtanx |
1-tanx |
sin2x-cos2x+1 |
1-tanx |
48 |
75 |
(3)∵
π |
2 |
π |
2 |
∴sin(α-
β |
2 |
1-
|
4
| ||
9 |
α |
2 |
1-
|
| ||
3 |
∴cos
α+β |
2 |
β |
2 |
α |
2 |
β |
2 |
α |
2 |
β |
2 |
α |
2 |
1 |
9 |
| ||
3 |
4
| ||
9 |
2 |
3 |
7
| ||
27 |
∴cos(α+β)=2cos2
α+β |
2 |
11 |
81 |
点评:本题主要考查了利用三角函数的基本公式化简求值.解题的时候要特别注意三角函数值的正负号.
练习册系列答案
相关题目