题目内容
【题目】已知函数f(x)满足f(x)=x2﹣2(a+2)x+a2 , g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max(p,q)表示p,q中的较大值,min(p,q)表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=( )
A.a2﹣2a﹣16
B.a2+2a﹣16
C.-16
D.16
【答案】C
【解析】解:取a=﹣2,则f(x)=x2+4,g(x)=﹣x2﹣8x+4.画出它们的图象,如图所示.
则H1(x)的最小值为两图象右边交点的纵坐标,H2(x)的最大值为两图象左边交点的纵坐标,
由
∴A=4,B=20,A﹣B=﹣16.
故选C.
练习册系列答案
相关题目