题目内容
如右图所示,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为,设这条最短路线与CC1的交点为N.求:
(1)该三棱柱的侧面展开图的对角线长;
(2)PC和NC的长.
(1)该三棱柱的侧面展开图的对角线长;
(2)PC和NC的长.
(1)其对角线长为
.
(2) PC=P1C=2,
NC=.
.
(2) PC=P1C=2,
NC=.
(1)正三棱柱ABC—A1B1C1的侧面展开图是一个长为9,宽为4的矩形,其对角线长为
.
(2)如右图所示,将侧面BB1C1C绕棱CC1旋转120°使其与侧面AA1C1C在同一平面上,点P运动到点P1的位置,连结MP1,则MP1就是由点P沿棱柱侧面经过棱CC1到点M的最短路线.
设PC=x,则P1C=x.
在Rt△MAP1中,
由勾股定理得(3+x)2+22=29,
求得x=2.∴PC=P1C=2,
∵,∴NC=.
.
(2)如右图所示,将侧面BB1C1C绕棱CC1旋转120°使其与侧面AA1C1C在同一平面上,点P运动到点P1的位置,连结MP1,则MP1就是由点P沿棱柱侧面经过棱CC1到点M的最短路线.
设PC=x,则P1C=x.
在Rt△MAP1中,
由勾股定理得(3+x)2+22=29,
求得x=2.∴PC=P1C=2,
∵,∴NC=.
练习册系列答案
相关题目