题目内容
设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是( )
A、[-
| ||||
B、[-2,2] | ||||
C、[-1,1] | ||||
D、[-4,4] |
分析:根据抛物线方程求得Q点坐标,设过Q点的直线l方程与抛物线方程联立消去y,根据判别式大于等于0求得k的范围.
解答:解:∵y2=8x,
∴Q(-2,0)(Q为准线与x轴的交点),设过Q点的直线l方程为y=k(x+2).
∵l与抛物线有公共点,
有解,
∴方程组
即k2x2+(4k2-8)+4k2=0有解.
∴△=(4k2-8)2-16k4≥0,即k2≤1.
∴-1≤k≤1,
故选C.
∴Q(-2,0)(Q为准线与x轴的交点),设过Q点的直线l方程为y=k(x+2).
∵l与抛物线有公共点,
有解,
∴方程组
|
即k2x2+(4k2-8)+4k2=0有解.
∴△=(4k2-8)2-16k4≥0,即k2≤1.
∴-1≤k≤1,
故选C.
点评:本题主要考查了抛物线的应用.涉及直线与抛物线的关系,常需要把直线方程与抛物线方程联立,利用韦达定理或判别式解决问题.
练习册系列答案
相关题目
设抛物线y2=8x的焦点为F,过F,的直线交抛物线于A(x1,y1),B(x2,y2),则y1y2=( )
A、8 | B、16 | C、-8 | D、-16 |