题目内容
计算:
(
+
+…+
)=
.
lim |
n→∞ |
1 |
n2 |
2 |
n2 |
n |
n2 |
1 |
2 |
1 |
2 |
分析:由于
+
+…+
=
=
,代入可求极限
1 |
n2 |
2 |
n2 |
n |
n2 |
n(n+1) |
2n2 |
1+
| ||
2 |
解答:解:
(
+
+…+
)=
=
=
=
故答案为:
lim |
n→∞ |
1 |
n2 |
2 |
n2 |
n |
n2 |
lim |
n→∞ |
1+2+…+n |
n2 |
=
lim |
n→∞ |
| ||
n2 |
lim |
n→∞ |
1+
| ||
2 |
1 |
2 |
故答案为:
1 |
2 |
点评:本题主要考查了数列极限的求解,解题的关键是利用等差数列的求和公式,属于基础试题
练习册系列答案
相关题目