题目内容
(2008•静安区一模)计算:
(2n-
)=
lim |
n→∞ |
4n2+2n-1 |
2n+2 |
1
1
.分析:由
(2n-
)=
=
可求
lim |
n→∞ |
4n2+2n-1 |
2n+2 |
lim |
n→∞ |
4n2+4n-4n2-2n+1 |
2n+2 |
lim |
n→∞ |
2n+1 |
2n+2 |
解答:解:∵
(2n-
)=
=
=
=1
故答案为:1
lim |
n→∞ |
4n2+2n-1 |
2n+2 |
lim |
n→∞ |
4n2+4n-4n2-2n+1 |
2n+2 |
=
lim |
n→∞ |
2n+1 |
2n+2 |
lim |
n→∞ |
1+
| ||
1+
|
故答案为:1
点评:本题主要考查了
型的数列极限的求解,属于基础试题
∞ |
∞ |
练习册系列答案
相关题目