题目内容
【题目】已知函数.
(1)判断函数的零点的个数并说明理由;
(2)求函数零点所在的一个区间,使这个区间的长度不超过;
(3)若,对于任意的,不等式恒成立,求实数的取值范围.
【答案】(1)一个,理由见解析;(2);.
【解析】
(1)分析函数的单调性,结合零点存在定理可得出结论;
(2)先可求得函数的零点所在的一个区间为,然后利用二分法可得出的一个零点所在的区间,且这个区间的长度不超过;
(3)由题意可知,,利用函数的单调性求出该函数在区间的最大值,将问题转化为关于的不等式对任意的恒成立,可得出,由此可解出实数的取值范围.
(1)由题易知:函数的定义域为,且在上连续,
,,,
函数和在上都是增函数,
所以,函数在上是增函数,
因此,函数在上有且只有一个零点;
(2)设函数的零点为,由(1)知:,,,
取,,
,且, 即为符合条件的区间;
(3)当时,对于任意的,不等式恒成立等价于
,,.
由函数在上是增函数,可知,
对任意恒成立,对任意恒成立,
,解得,
因此,的取值范围是.
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:
(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50 kg | 箱产量≥50 kg | |
旧养殖法 | ||
新养殖法 |
(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.
附:
P() | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.
【题目】假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
维修费用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料知y对x呈线性相关关系.
(1)请画出上表数据的散点图;
(2)请根据最小二乘法求出线性回归方程的回归系数a,b;
(3)估计使用年限为10年时,维修费用是多少?