题目内容

如图菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,,点H、G分别是线段EF、BC的中点.
(1)求证:平面AHC平面;(2)点M在直线EF上,且平面,求平面ACH与平面ACM所成锐角的余弦值.

(1)详见解析;(2)平面ACH与平面ACM所成锐角的余弦值为.

解析试题分析:(1)要证面面垂直,首先证线面垂直.那么在本题中证哪条线垂直哪个面?结合条件可得,所以面AHC,从而平面AHC平面BCE.(2)因为AD、AB、AH两两互相垂直,故分别以AD、AB、AH所在直线为轴、轴、轴建立空间直角坐标系,然后利用空间向量即可求解.
(1)在菱形ABEF中,因为,所以是等边三角形,又因为H是线段EF的中点,所以
因为面ABEF面ABCD,且面ABEF面ABCD=AB,
所以AH面ABCD,所以
在直角梯形中,AB=2AD=2CD=4,,得到,从而,所以,又AHAC=A
所以面AHC,又面BCE,所以平面AHC平面BCE    .6分
(2)分别以AD、AB、AH所在直线为轴、轴、轴建立空间直角坐标系,则有
设点,则存在实数,使得,代入解得
由(1)知平面AHC的法向量是
设平面ACM的法向量是,则
所以
即平面ACH与平面ACM所成锐角的余弦值为.      12分
考点:(1)空间直线与平面的关系;(2)二面角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网