题目内容
(本小题满分12分)
已知曲线上的点到点的距离比它到直线的距离小2.
(1)求曲线的方程;
(2)曲线在点处的切线与轴交于点.直线分别与直线及轴交于点,以为直径作圆,过点作圆的切线,切点为,试探究:当点在曲线上运动(点与原点不重合)时,线段的长度是否发生变化?证明你的结论.
(1).(2)当点P在曲线上运动时,线段AB的长度不变,证明见解析.
解析试题分析:(1)思路一:设为曲线上任意一点,
依题意可知曲线是以点为焦点,直线为准线的抛物线,
得到曲线的方程为.
思路二:设为曲线上任意一点,
由,化简即得.
(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:
由(1)知抛物线的方程为,
设,得,
应用导数的几何意义,确定切线的斜率,进一步得切线的方程为.
由,得.
由,得.
根据,得圆心,半径,
由弦长,半径及圆心到直线的距离之关系,确定.
试题解析:解法一:(1)设为曲线上任意一点,
依题意,点S到的距离与它到直线的距离相等,
所以曲线是以点为焦点,直线为准线的抛物线,
所以曲线的方程为.
(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:
由(1)知抛物线的方程为,
设,则,
由,得切线的斜率
,
所以切线的方程为,即.
由,得.
由,得.
又,所以圆心,
半径,
.
所以点P在曲线上运动时,线段AB的长度不变.
解法二:
(1)设为曲线上任意一点,
则,
依题意,点只能在直线的上方,所以,
所以,
化简得,曲线的方程为.
(2)同解法一.
考点:抛物线的定义,导数的几何意义,直线方程,直线与抛物线的位置关系,直线与圆的位置关系.
练习册系列答案
相关题目