题目内容

从直线x-y+3=0上的点向圆x2+y2-4x-4y+7=0引切线,则切线长的最小值为 

解析试题分析:把圆的方程化为标准式后,找出圆心坐标和圆的半径,利用图形可知,当圆心A与直线x-y+3=0垂直时,过垂足作圆的切线,切线长最短,连接AB,根据圆的切线垂直于过切点的直径可得三角形ABC为直角三角形,利用点到直线的距离公式求出圆心到直线x-y+3=0的距离即为|AC|的长,然后根据半径和|AC|的长,利用勾股定理即可求出此时的切线长.由于圆心(2,2),半径为1,那么可知圆心到直线的距离为 ,那么利用勾股定理可知切线长的最小值为
考点:圆的切线
点评:此题考查学生学生灵活运用点到直线的距离公式化简求值,掌握圆的切线垂直于过切点的直径这个性质,是一道中档题.此题的关键是找出切线长最短时的条件,根据题意画出相应的图形

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网