题目内容

精英家教网已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<2π)在一个周期内的图象如图所示.
(Ⅰ)求ω,φ的值;
(Ⅱ)在△ABC中,设内角A、B、C所对边的长分别是a、b、c,若f(B)=-2,a=4,△ABC的面积S=2
3
,求b的大小.
分析:(Ⅰ)由题意求出A,T,利用周期公式求出ω,利用当x=-
π
3
时取得最大值2,代入函数的表达式,求出φ,得到函数的解析式.
(Ⅱ)在△ABC中,设内角A、B、C所对边的长分别是a、b、c,利用f(B)=-2,求出B的值,a=4,利用△ABC的面积S=2
3
,结合余弦定理直接求b的大小.
解答:解:
(I)由题意,得
T
4
=-
π
3
+
6
=
π
2
?
π
=
π
2
?ω=1
∴f(x)=2sin(x+φ)
f(-
π
3
)=2sin(-
4
3
+φ)=2
?sin(-
π
3
+φ)=1
?-
π
3
+φ=
π
2
+2kπ(k∈Z)

φ=
6
+2kπ

∵0<φ<2π,∴φ=
6


(II)由f(B)=2sin(B+
6
)-2
?sin(B+
6
)=-1

∵0<B<π,∴
6
<B+
6
11π
6
,∴B+
6
=
2
,∴B=
3

S△ABC=
1
2
acsinB=2
3
?
3
c=2
3
?c=2
由余弦定理,可得b2=a2+c2-2accosB=16+4+8=28
b=2
7
点评:本题是基础题,考查由y=Asin(ωx+φ)的部分图象确定其解析式,注意函数的周期的求法,考查计算能力,余弦定理等有关知识,是常考题型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网