题目内容

(2012•江西模拟)已知数列{an},{bn}中,对任何整数n都有:a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1=2n+1-n-2
(1)若数列{an}是首项和公差都有1的等差数列,求证:数列{bn}是等比数列;
(2)若{bn}=2n,试判断数列{an}是否是等差数列?若是,请求出通项公式,若不是,请说明理由.
分析:(1)根据等差数列的性质求得数列{an}的通项公式,代入a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1=2n+1-n-2中,利用错位相减法求得bn=2n-1,进而推断数列{bn}是等比数列.
(2)由2na1+2n-1a2+…+2an=2n+1-n-2可得2n-1a1+2n-2a2+…+2an-1=2n-n-1,两式联立可求
解答:证明:(1)依题意数列{an}的通项公式是an=n,
故等式即为bn+2bn-1+3bn-2+…+(n-1)b2+nb1=2n+1-n-2
∴bn-1+2bn-2+3bn-3+…+(n-2)b2+(n-1)b1=2n-n-1(n≥2)
两式相减可得bn+bn-1+…+b2+b1=2n-1
∴bn=2n-1,即数列{bn}是首项为1,公比为2的等比数列.
(2)解:∵2na1+2n-1a2+…+2an=2n+1-n-2
2n-1a1+2n-2a2+…+2an-1=2n-n-1
两式联立可得,2(2n-n-1)+2an=2n+1-n-2
an=
1
2
n
点评:本题主要考查了等差数列的性质,考查了学生综合分析问题和解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网