题目内容
设函数![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_ST/0.png)
(1)求f(x)的值域;
(2)记△ABC的内角A,B,C所对边长分别为a,b,c,若
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_ST/1.png)
【答案】分析:(1)利用两角和差的余弦公式、半角公式化简函数f(x)的解析式为cos(x+
)+1,由此求得它的值域.
(2)△ABC中,若
,c=3,则得 B=
.由余弦定理可求得a的值.
解答:解:(1)函数
=
sinxcos
+
cosxsin
+2×
=
cosx-
sinx=cos(x+
)+1,
由于 cos(x+
)∈[-1,1],∴cos(x+
)+1∈[0,2],
故函数的值域为[0,2].
(2)△ABC中,若
,c=3,则得 cos(B+
)=-
,故 B=
.
由余弦定理可得 b2=a2+c2-2ac•cosB,化简可得a2-3a+2=0,解得a=1,或a=2.
点评:本题主要考查两角和差的余弦公式、半角公式的应用,余弦函数的定义域和值域,余弦定理的应用,属于中档题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_DA/0.png)
(2)△ABC中,若
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_DA/2.png)
解答:解:(1)函数
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_DA/11.png)
由于 cos(x+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_DA/13.png)
故函数的值域为[0,2].
(2)△ABC中,若
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104217601605231/SYS201311031042176016052016_DA/17.png)
由余弦定理可得 b2=a2+c2-2ac•cosB,化简可得a2-3a+2=0,解得a=1,或a=2.
点评:本题主要考查两角和差的余弦公式、半角公式的应用,余弦函数的定义域和值域,余弦定理的应用,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目