题目内容
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=
(b,c∈N)有且只有两个不动点0,2,且f(-2)<-
,
(1)求函数f(x)的解析式;
(2)已知各项不为零的数列{an}满足4Sn•f(
)=1,求数列通项an;
(3)如果数列{an}满足a1=4,an+1=f(an),求证:当n≥2时,恒有an<3成立.
x2+a |
bx-c |
1 |
2 |
(1)求函数f(x)的解析式;
(2)已知各项不为零的数列{an}满足4Sn•f(
1 |
an |
(3)如果数列{an}满足a1=4,an+1=f(an),求证:当n≥2时,恒有an<3成立.
分析:(1)由
=x,化简为(1-b)x2+cx+a=0,利用韦达定理可求得
,代入f(x)=
(b,c∈N),依题意可求得c=2,b=2,从而可得函数f(x)的解析式;
(2)由4Sn-
=1,整理得2Sn=an-an2(*),于是有2Sn-1=an-1-an-12(**),二式相减得(an+an-1)(an-an-1+1)=0,讨论后即可求得数列通项an;
(3)由an+1=f(an)得,an+1=
,取倒数得
=-2(
-
)2+
≤
⇒an+1<0或an+1≥2,分别讨论即可.
x2+a |
bx-c |
|
x2+a |
bx-c |
(2)由4Sn-
(
| ||
2(
|
(3)由an+1=f(an)得,an+1=
an2 |
2an-2 |
1 |
an+1 |
1 |
an |
1 |
2 |
1 |
2 |
1 |
2 |
解答:解:(1)依题意有
=x,化简为(1-b)x2+cx+a=0,由韦达定理得:
,解得
,代入表达式f(x)=
,
由f(-2)=
<-
,得c<3,又c∈N,b∈N,
若c=0,b=1,则f(x)=x不止有两个不动点,
∴c=2,b=2,故f(x)=
,(x≠1).
(2)由题设得4Sn•
=1,整理得:2Sn=an-an2,(*)
且an≠1,以n-1代n得2Sn-1=an-1-an-12,(**)
由(*)与(**)两式相减得:
2an=(an-an-1)-(an2-an-12),即(an+an-1)(an-an-1+1)=0,
∴an=-an-1或an-an-1=-1,以n=1代入(*)得:2a1=a1-a12,
解得a1=0(舍去)或a1=-1,由a1=-1,若an=-an-1得a2=1,这与an≠1矛盾,
∴an-an-1=-1,即{an}是以-1为首项,-1为公差的等差数列.
(3)由an+1=f(an)得,an+1=
,
=-2(
-
)2+
≤
,
∴an+1<0或an+1≥2.
若an+1<0,则an+1<0<3成立;
若an+1≥2,此时n≥2,从而an+1-an=
≤0,即数列{an}在n≥2时单调递减,由a2=2
知,an≤a2=2
<3,在n≥2上成立.
综上所述,当n≥2时,恒有an<3成立.
x2+a |
bx-c |
|
|
x2 | ||
(1+
|
由f(-2)=
-2 |
1+c |
1 |
2 |
若c=0,b=1,则f(x)=x不止有两个不动点,
∴c=2,b=2,故f(x)=
x2 |
2(x-1) |
(2)由题设得4Sn•
(
| ||
2(
|
且an≠1,以n-1代n得2Sn-1=an-1-an-12,(**)
由(*)与(**)两式相减得:
2an=(an-an-1)-(an2-an-12),即(an+an-1)(an-an-1+1)=0,
∴an=-an-1或an-an-1=-1,以n=1代入(*)得:2a1=a1-a12,
解得a1=0(舍去)或a1=-1,由a1=-1,若an=-an-1得a2=1,这与an≠1矛盾,
∴an-an-1=-1,即{an}是以-1为首项,-1为公差的等差数列.
(3)由an+1=f(an)得,an+1=
an2 |
2an-2 |
1 |
an+1 |
1 |
an |
1 |
2 |
1 |
2 |
1 |
2 |
∴an+1<0或an+1≥2.
若an+1<0,则an+1<0<3成立;
若an+1≥2,此时n≥2,从而an+1-an=
-an(an-2) |
2(an-1) |
2 |
3 |
2 |
3 |
综上所述,当n≥2时,恒有an<3成立.
点评:本题考查数列的函数特性,着重考查等差数列的判定,考查推理证明能力,考查转化思想与分类讨论思想的综合应用,属于难题.

练习册系列答案
相关题目