ÌâÄ¿ÄÚÈÝ
¶ÔÓÚº¯Êýf£¨x£©£¬Èô´æÔÚx0¡ÊR£¬Ê¹µÃf£¨x0£©=x0£¬Ôò³Æx0Ϊº¯Êýf£¨x£©µÄ²»¶¯µã£®Èôº¯Êýf£¨x£©=
£¨b£¬c¡ÊN*£©ÓÐÇÒ½öÓÐÁ½¸ö²»¶¯µã0ºÍ2£¬ÇÒf£¨-2£©£¼-
£®
£¨1£©ÊÔÇóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£¬
£¨2£©ÒÑÖª¸÷ÏΪ0µÄÊýÁÐ{an}Âú×ã4Sn•f£¨
£©=1£¬ÆäÖÐSn±íʾÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÇóÖ¤£º(1-
)an+1£¼
£¼(1-
)an
£¨3£©ÔÚ£¨2£©µÄÇ°ÌâÌõ¼þÏ£¬Éèbn=-
£¬Tn±íʾÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇóÖ¤£ºT2011-1£¼ln2011£¼T2010£®
x2+a |
bx-c |
1 |
2 |
£¨1£©ÊÔÇóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£¬
£¨2£©ÒÑÖª¸÷ÏΪ0µÄÊýÁÐ{an}Âú×ã4Sn•f£¨
1 |
an |
1 |
an |
1 |
e |
1 |
an |
£¨3£©ÔÚ£¨2£©µÄÇ°ÌâÌõ¼þÏ£¬Éèbn=-
1 |
an |
·ÖÎö£º£¨1£©Óɺ¯Êýf£¨x£©=
£¨b£¬c¡ÊN*£©ÓÐÇÒ½öÓÐÁ½¸ö²»¶¯µã0ºÍ2£¬Öª
£¬¹Êa=0£¬2b-c=2£®ÓÉf£¨-2£©£¼-
£¬Öª
£¼b£¼
£¬ÓÉb£¬c¡ÊN*£¬½âµÃf(x)=
£®¶¨ÒåÓòΪx¡Ù1£¬ÓÉ´ËÄÜÇó³öº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£®
£¨2£©Óɸ÷ÏΪ0µÄÊýÁÐ{an}Âú×ã4Sn•f£¨
£©=1£¬Öª2Sn=an-an2£¬¹Êan=-n£®ËùÒÔ(1-
)an+1£¼
£¼(1-
)anµÈ¼ÛÓÚ
£¼ln(1+
)£¼
£®ÓÉ
£¼ln(1+x)£¼x£¬Áîx=
£¬µÃÖ¤£®
£¨3£©ÓÉ£¨2£©µÃ£¬bn=
£¬ÔòTn=1+
+
+¡+
£¬ÔÚ
£¼ln(1+
)£¼
ÖУ¬Áîn=1£¬2£¬3£¬¡£¬2010£¬
²¢½«¸÷ʽÏà¼Ó£¬µÃµ½T2011-1£¼ln2011£¼T2010£®
x2+a |
bx-c |
|
1 |
2 |
1 |
2 |
5 |
2 |
x2 |
2x-2 |
£¨2£©Óɸ÷ÏΪ0µÄÊýÁÐ{an}Âú×ã4Sn•f£¨
1 |
an |
1 |
an |
1 |
e |
1 |
an |
1 |
n+1 |
1 |
n |
1 |
n |
x |
1+x |
1 |
n |
£¨3£©ÓÉ£¨2£©µÃ£¬bn=
1 |
n |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
1 |
n |
1 |
n |
²¢½«¸÷ʽÏà¼Ó£¬µÃµ½T2011-1£¼ln2011£¼T2010£®
½â´ð£º½â£º£¨1£©¡ßº¯Êýf£¨x£©=
£¨b£¬c¡ÊN*£©ÓÐÇÒ½öÓÐÁ½¸ö²»¶¯µã0ºÍ2£¬
¡à
£¬
¡àa=0£¬2b-c=2£®
¡àf(x)=
£¬
¡ßf£¨-2£©£¼-
£¬
¡à
£¼-
£¬
¡à
£¾
£¬
¡à0£¼2b-1£¼4£¬
¡à
£¼b£¼
£¬
¡ßb£¬c¡ÊN*£¬
¡àb=1£¬c=0£¨Éᣩ£¬»òb=2£¬c=2£®
¡àf(x)=
£®¶¨ÒåÓòΪx¡Ù1£¬
¡àf¡ä(x)=
=
£¬
ÓÉf¡ä(x)=
£¾0£¬µÃx£¼0£¬»òx£¾2£¬
ÓÉf¡ä(x)=
£¼0£¬µÃ0£¼x£¼2£¬
¡ßx¡Ù1£¬
¡àº¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼äÊÇ£¨-¡Þ£¬0£©£¬£¨2£¬+¡Þ£©£»µ¥µ÷¼õÇø¼äÊÇ£¨0£¬1£©£¬£¨1£¬2£©£®
£¨2£©¡ß¸÷ÏΪ0µÄÊýÁÐ{an}Âú×ã4Sn•f£¨
£©=1£¬
¡à4Sn•
=4Sn•
=1£¬
¡à4Sn=2an-2an2£¬
¡à2Sn=an-an2£¬
µ±n¡Ý2ʱ£¬2Sn-1=an-1-an-12£¬
Á½Ê½Ïà¼õ£¬µÃan=-an-1£¬»òan-an-1=-1£¬
µ±n=1ʱ£¬a1=-1£¬
ÓÉan=-an-1£¬Öªa2=1£¬²»ÔÚ¶¨ÒåÓò·¶Î§ÄÚ£¬Ó¦ÉáÈ¥£®
¹Êan-an-1=-1£¬
¡àan=-n£®
¡à(1-
)an+1£¼
£¼(1-
)anµÈ¼ÛÓÚ£¨1+
£©-£¨n+1£©£¼
£¼£¨1+
£©-n£¬
¼´(1+
)n£¼e£¼(1+
)n+1£¬
Á½±ßÈ¡¶ÔÊýºó£¬nln(1+
)£¼1£¼(n+1)ln(1+
)£¬
¼´Ö¤
£¼ln(1+
)£¼
£®
Éèf£¨x£©=ln£¨1+x£©-x£¬x£¾0
Ôò f¡ä£¨x£©=
-1£¼0£¬
ËùÒÔ f£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÊǼõº¯Êý£¬
ÓÚÊÇ f£¨x£©£¼f£¨0£©=0 ¼´ ln£¨1+x£©£¼x£®
Éèg£¨x£©=
-ln£¨1+x£©£¬
Ôò g¡ä£¨x£©=
-
=-
£¼0£¬
ËùÒÔ g£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÊǼõº¯Êý£¬ÓÚÊÇ g£¨x£©£¼g£¨0£©=0£¬
¼´
£¼ln£¨1+x£©£®
¡à
£¼ln(1+x)£¼x£¬
Áîx=
£¬µÃ
£¼ln(1+
)£¼
£®
¡à(1-
)an+1£¼
£¼(1-
)an£®
£¨3£©ÓÉ£¨2£©µÃ£¬bn=
£¬
ÔòTn=1+
+
+¡+
£¬
ÔÚ
£¼ln(1+
)£¼
ÖУ¬
Áîn=1£¬2£¬3£¬¡£¬2010£¬
²¢½«¸÷ʽÏà¼Ó£¬µÃ
+
+¡+
£¼ln
+ln
+¡+ln
£¼1+
+
+¡+
£¬
¡àT2011-1£¼ln2011£¼T2010£®
x2+a |
bx-c |
¡à
|
¡àa=0£¬2b-c=2£®
¡àf(x)=
x2 |
bx+2-2b |
¡ßf£¨-2£©£¼-
1 |
2 |
¡à
4 |
2-4b |
1 |
2 |
¡à
2 |
2b-1 |
2 |
4 |
¡à0£¼2b-1£¼4£¬
¡à
1 |
2 |
5 |
2 |
¡ßb£¬c¡ÊN*£¬
¡àb=1£¬c=0£¨Éᣩ£¬»òb=2£¬c=2£®
¡àf(x)=
x2 |
2x-2 |
¡àf¡ä(x)=
2x(2x-2)-2x2 |
(2x-2)2 |
2x2-4x |
(2x-2)2 |
ÓÉf¡ä(x)=
2x2-4x |
(2x-2)2 |
ÓÉf¡ä(x)=
2x2-4x |
(2x-2)2 |
¡ßx¡Ù1£¬
¡àº¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼äÊÇ£¨-¡Þ£¬0£©£¬£¨2£¬+¡Þ£©£»µ¥µ÷¼õÇø¼äÊÇ£¨0£¬1£©£¬£¨1£¬2£©£®
£¨2£©¡ß¸÷ÏΪ0µÄÊýÁÐ{an}Âú×ã4Sn•f£¨
1 |
an |
¡à4Sn•
| ||
|
1 |
2an-2an2 |
¡à4Sn=2an-2an2£¬
¡à2Sn=an-an2£¬
µ±n¡Ý2ʱ£¬2Sn-1=an-1-an-12£¬
Á½Ê½Ïà¼õ£¬µÃan=-an-1£¬»òan-an-1=-1£¬
µ±n=1ʱ£¬a1=-1£¬
ÓÉan=-an-1£¬Öªa2=1£¬²»ÔÚ¶¨ÒåÓò·¶Î§ÄÚ£¬Ó¦ÉáÈ¥£®
¹Êan-an-1=-1£¬
¡àan=-n£®
¡à(1-
1 |
an |
1 |
e |
1 |
an |
1 |
n |
1 |
e |
1 |
n |
¼´(1+
1 |
n |
1 |
n |
Á½±ßÈ¡¶ÔÊýºó£¬nln(1+
1 |
n |
1 |
n |
¼´Ö¤
1 |
n+1 |
1 |
n |
1 |
n |
Éèf£¨x£©=ln£¨1+x£©-x£¬x£¾0
Ôò f¡ä£¨x£©=
1 |
1+x |
ËùÒÔ f£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÊǼõº¯Êý£¬
ÓÚÊÇ f£¨x£©£¼f£¨0£©=0 ¼´ ln£¨1+x£©£¼x£®
Éèg£¨x£©=
x |
1+x |
Ôò g¡ä£¨x£©=
1 |
(1+x)2 |
1 |
1+x |
x |
(1+x)2 |
ËùÒÔ g£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÊǼõº¯Êý£¬ÓÚÊÇ g£¨x£©£¼g£¨0£©=0£¬
¼´
x |
1+x |
¡à
x |
1+x |
Áîx=
1 |
n |
1 |
n+1 |
1 |
n |
1 |
n |
¡à(1-
1 |
an |
1 |
e |
1 |
an |
£¨3£©ÓÉ£¨2£©µÃ£¬bn=
1 |
n |
ÔòTn=1+
1 |
2 |
1 |
3 |
1 |
n |
ÔÚ
1 |
n+1 |
1 |
n |
1 |
n |
Áîn=1£¬2£¬3£¬¡£¬2010£¬
²¢½«¸÷ʽÏà¼Ó£¬µÃ
1 |
2 |
1 |
3 |
1 |
2011 |
2 |
1 |
3 |
2 |
2011 |
2010 |
1 |
2 |
1 |
3 |
1 |
2010 |
¡àT2011-1£¼ln2011£¼T2010£®
µãÆÀ£º±¾Ì⿼²éº¯ÊýÓëÊýÁеÄ×ÛºÏÔËÓ㬿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²é»¯¹éÓëת»¯Ë¼Ï룮¶ÔÊýѧ˼άµÄÒªÇó±È½Ï¸ß£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬ÊǸ߿¼µÄÖص㣬Ò×´íµãÊÇ(1-
)an+1£¼
£¼(1-
)anµÈ¼ÛÓÚ
£¼ln(1+
)£¼
µÄÖ¤Ã÷£®½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
1 |
an |
1 |
e |
1 |
an |
1 |
n+1 |
1 |
n |
1 |
n |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿