ÌâÄ¿ÄÚÈÝ

¶ÔÓÚº¯Êýf£¨x£©£¬Èô´æÔÚx0¡ÊR£¬Ê¹µÃf£¨x0£©=x0£¬Ôò³Æx0Ϊº¯Êýf£¨x£©µÄ²»¶¯µã£®Èôº¯Êýf£¨x£©=
x2+a
bx-c
£¨b£¬c¡ÊN*£©ÓÐÇÒ½öÓÐÁ½¸ö²»¶¯µã0ºÍ2£¬ÇÒf£¨-2£©£¼-
1
2
£®
£¨1£©ÊÔÇóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£¬
£¨2£©ÒÑÖª¸÷ÏΪ0µÄÊýÁÐ{an}Âú×ã4Sn•f£¨
1
an
£©=1£¬ÆäÖÐSn±íʾÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÇóÖ¤£º(1-
1
an
)an+1£¼
1
e
£¼(1-
1
an
)an

£¨3£©ÔÚ£¨2£©µÄÇ°ÌâÌõ¼þÏ£¬Éèbn=-
1
an
£¬Tn±íʾÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇóÖ¤£ºT2011-1£¼ln2011£¼T2010£®
·ÖÎö£º£¨1£©Óɺ¯Êýf£¨x£©=
x2+a
bx-c
£¨b£¬c¡ÊN*£©ÓÐÇÒ½öÓÐÁ½¸ö²»¶¯µã0ºÍ2£¬Öª
0+a
0-c
=0
4+a
2b-c
=2
£¬¹Êa=0£¬2b-c=2£®ÓÉf£¨-2£©£¼-
1
2
£¬Öª
1
2
£¼b£¼
5
2
£¬ÓÉb£¬c¡ÊN*£¬½âµÃf(x)=
x2
2x-2
£®¶¨ÒåÓòΪx¡Ù1£¬ÓÉ´ËÄÜÇó³öº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£®
£¨2£©Óɸ÷ÏΪ0µÄÊýÁÐ{an}Âú×ã4Sn•f£¨
1
an
£©=1£¬Öª2Sn=an-an2£¬¹Êan=-n£®ËùÒÔ(1-
1
an
)an+1£¼
1
e
£¼(1-
1
an
)an
µÈ¼ÛÓÚ
1
n+1
£¼ln(1+
1
n
)£¼
1
n
£®ÓÉ
x
1+x
£¼ln(1+x)£¼x
£¬Áîx=
1
n
£¬µÃÖ¤£®
£¨3£©ÓÉ£¨2£©µÃ£¬bn=
1
n
£¬ÔòTn=1+
1
2
+
1
3
+¡­+
1
n
£¬ÔÚ
1
n+1
£¼ln(1+
1
n
)£¼
1
n
ÖУ¬Áîn=1£¬2£¬3£¬¡­£¬2010£¬
²¢½«¸÷ʽÏà¼Ó£¬µÃµ½T2011-1£¼ln2011£¼T2010£®
½â´ð£º½â£º£¨1£©¡ßº¯Êýf£¨x£©=
x2+a
bx-c
£¨b£¬c¡ÊN*£©ÓÐÇÒ½öÓÐÁ½¸ö²»¶¯µã0ºÍ2£¬
¡à
0+a
0-c
=0
4+a
2b-c
=2
£¬
¡àa=0£¬2b-c=2£®
¡àf(x)=
x2
bx+2-2b
£¬
¡ßf£¨-2£©£¼-
1
2
£¬
¡à
4
2-4b
£¼-
1
2
£¬
¡à
2
2b-1
£¾
2
4
£¬
¡à0£¼2b-1£¼4£¬
¡à
1
2
£¼b£¼
5
2
£¬
¡ßb£¬c¡ÊN*£¬
¡àb=1£¬c=0£¨Éᣩ£¬»òb=2£¬c=2£®
¡àf(x)=
x2
2x-2
£®¶¨ÒåÓòΪx¡Ù1£¬
¡àf¡ä(x)=
2x(2x-2)-2x2
(2x-2)2
=
2x2-4x
(2x-2)2
£¬
ÓÉf¡ä(x)=
2x2-4x
(2x-2)2
£¾0£¬µÃx£¼0£¬»òx£¾2£¬
ÓÉf¡ä(x)=
2x2-4x
(2x-2)2
£¼0£¬µÃ0£¼x£¼2£¬
¡ßx¡Ù1£¬
¡àº¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼äÊÇ£¨-¡Þ£¬0£©£¬£¨2£¬+¡Þ£©£»µ¥µ÷¼õÇø¼äÊÇ£¨0£¬1£©£¬£¨1£¬2£©£®
£¨2£©¡ß¸÷ÏΪ0µÄÊýÁÐ{an}Âú×ã4Sn•f£¨
1
an
£©=1£¬
¡à4Sn
1
an2
2
an
-2
=4Sn
1
2an-2an2
=1£¬
¡à4Sn=2an-2an2£¬
¡à2Sn=an-an2£¬
µ±n¡Ý2ʱ£¬2Sn-1=an-1-an-12£¬
Á½Ê½Ïà¼õ£¬µÃan=-an-1£¬»òan-an-1=-1£¬
µ±n=1ʱ£¬a1=-1£¬
ÓÉan=-an-1£¬Öªa2=1£¬²»ÔÚ¶¨ÒåÓò·¶Î§ÄÚ£¬Ó¦ÉáÈ¥£®
¹Êan-an-1=-1£¬
¡àan=-n£®
¡à(1-
1
an
)an+1£¼
1
e
£¼(1-
1
an
)an
µÈ¼ÛÓÚ£¨1+
1
n
£©-£¨n+1£©£¼
1
e
£¼
£¨1+
1
n
£©-n£¬
¼´(1+
1
n
)n£¼e£¼(1+
1
n
)n+1
£¬
Á½±ßÈ¡¶ÔÊýºó£¬nln(1+
1
n
)£¼1£¼(n+1)ln(1+
1
n
)
£¬
¼´Ö¤
1
n+1
£¼ln(1+
1
n
)£¼
1
n
£®
Éèf£¨x£©=ln£¨1+x£©-x£¬x£¾0
Ôò f¡ä£¨x£©=
1
1+x
-1£¼0£¬
ËùÒÔ f£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÊǼõº¯Êý£¬
ÓÚÊÇ f£¨x£©£¼f£¨0£©=0 ¼´ ln£¨1+x£©£¼x£®
Éèg£¨x£©=
x
1+x
-ln£¨1+x£©£¬
Ôò g¡ä£¨x£©=
1
(1+x)2
-
1
1+x
=-
x
(1+x)2
£¼0£¬
ËùÒÔ g£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÊǼõº¯Êý£¬ÓÚÊÇ g£¨x£©£¼g£¨0£©=0£¬
¼´
x
1+x
£¼ln£¨1+x£©£®
¡à
x
1+x
£¼ln(1+x)£¼x
£¬
Áîx=
1
n
£¬µÃ
1
n+1
£¼ln(1+
1
n
)£¼
1
n
£®
¡à(1-
1
an
)an+1£¼
1
e
£¼(1-
1
an
)an
£®
£¨3£©ÓÉ£¨2£©µÃ£¬bn=
1
n
£¬
ÔòTn=1+
1
2
+
1
3
+¡­+
1
n
£¬
ÔÚ
1
n+1
£¼ln(1+
1
n
)£¼
1
n
ÖУ¬
Áîn=1£¬2£¬3£¬¡­£¬2010£¬
²¢½«¸÷ʽÏà¼Ó£¬µÃ
1
2
+
1
3
+¡­+
1
2011
£¼ln
2
1
+ln
3
2
+¡­+ln
2011
2010
£¼1+
1
2
+
1
3
+¡­+
1
2010
£¬
¡àT2011-1£¼ln2011£¼T2010£®
µãÆÀ£º±¾Ì⿼²éº¯ÊýÓëÊýÁеÄ×ÛºÏÔËÓ㬿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²é»¯¹éÓëת»¯Ë¼Ï룮¶ÔÊýѧ˼άµÄÒªÇó±È½Ï¸ß£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬ÊǸ߿¼µÄÖص㣬Ò×´íµãÊÇ(1-
1
an
)an+1£¼
1
e
£¼(1-
1
an
)an
µÈ¼ÛÓÚ
1
n+1
£¼ln(1+
1
n
)£¼
1
n
µÄÖ¤Ã÷£®½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø