ÌâÄ¿ÄÚÈÝ
5£®ÒÑÖªÔÚ¼«×ø±êϵÏ£¬ÇúÏßC£º¦Ñ£¨$\sqrt{3}$cos¦È-sin¦È£©=-4£¬µãA£¨2£¬$\frac{5¦Ð}{6}$£©£®£¨1£©ÅжÏÇúÏßCÓëµãAµÄλÖùØϵ£»
£¨2£©ÒÑÖª¼«×ø±êµÄ¼«µãÓëÖ±½Ç×ø±êÔµãÖغϣ¬¼«ÖáÓëÖ±½Ç×ø±êµÄxÖáÕý°ëÖáÖغϣ¬Ö±Ïßl£º$\left\{\begin{array}{l}{x=\sqrt{3}-\sqrt{3}t}\\{y=-2+3t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇóÇúÏßCÓëÖ±Ïßl½»µãµÄÖ±½Ç×ø±ê£®
·ÖÎö £¨1£©Çó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬AµÄÖ±½Ç×ø±ê£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©Çó³öÖ±ÏßlµÄÆÕͨ·½³Ì£¬ÁªÁ¢·½³Ì×é¿ÉµÃÖ±ÏßlÓëÇúÏßCµÄ½»µãµÄÖ±½Ç×ø±ê£®
½â´ð ½â£º£¨1£©ÇúÏßC£º¦Ñ£¨$\sqrt{3}$cos¦È-sin¦È£©=-4£¬¿É»¯Îª$\sqrt{3}x$-y+4=0
µãA£¨2£¬$\frac{5¦Ð}{6}$£©£¬¿É»¯Îª£¨-$\sqrt{3}$£¬1£©£¬Âú×ã$\sqrt{3}x$-y+4=0£¬
¹ÊAÔÚÇúÏßCÉÏ£®
£¨2£©Ö±Ïßl£º$\left\{\begin{array}{l}{x=\sqrt{3}-\sqrt{3}t}\\{y=-2+3t}\end{array}\right.$£¨tΪ²ÎÊý£©µÄÆÕͨ·½³ÌΪ£º$\sqrt{3}$x+y-1=0
ÁªÁ¢·½³Ìºó½âµÃ£ºx=-$\frac{\sqrt{3}}{2}$£¬y=2.5
¹ÊÖ±ÏßlÓëÇúÏßCµÄ½»µãµÄÖ±½Ç×ø±êΪ£¨-$\frac{\sqrt{3}}{2}$£¬2.5£©£®
µãÆÀ ±¾Ì⿼²éµãµÄ¼«×ø±êºÍÖ±½Ç×ø±êµÄ»¥»¯£¬²ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄ»¥»¯£¬±È½Ï»ù´¡£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
17£®ÈçͼËùʾµÄÈý¸öÖ±½ÇÈý½ÇÐÎÊÇÒ»¸öÌå»ýΪ20cm3µÄ¼¸ºÎÌåµÄÈýÊÓͼ£¬Ôòh=£¨¡¡¡¡£©cm£®
A£® | 4 | B£® | 2 | C£® | 1 | D£® | $\frac{1}{2}$ |