题目内容
已知矩阵M=
,向量
=
.
(1)求矩阵M的特征向量;
(2)计算M50
.
|
β |
|
(1)求矩阵M的特征向量;
(2)计算M50
β |
分析:(1)先根据特征值的定义列出特征多项式f(λ),再令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量.
(2)利用特征向量的性质计算,先利用特征向量表示向量β,后将求A50β的值的问题转化成求有关特征向量的计算问题.
(2)利用特征向量的性质计算,先利用特征向量表示向量β,后将求A50β的值的问题转化成求有关特征向量的计算问题.
解答:解:(1)矩阵M的特征多项式为f(λ)=
=(λ-2)2-4=0,…(3分)
所以λ1=0,λ2=4,设对应的特征向量为α1=
,α2=
.
由Mα1=λ1α1,Mα2=λ2α2,可得2x1+y1=0,2x2-y2=0,
所以矩阵M的一个特征向量为α1=
,α2=
.…(7分)
(2)令β=mα1+nα2,则
=m
+n
,解得m=-
,n=
,…(9分)
所以M50β=M50(-
α1+
α2)
=-
(M50α1)+
(M50α2)
=-
(λ150α1)+
(λ250α2)
=
•450
=
. …(14分)
|
所以λ1=0,λ2=4,设对应的特征向量为α1=
|
|
由Mα1=λ1α1,Mα2=λ2α2,可得2x1+y1=0,2x2-y2=0,
所以矩阵M的一个特征向量为α1=
|
|
(2)令β=mα1+nα2,则
|
|
|
5 |
4 |
9 |
4 |
所以M50β=M50(-
5 |
4 |
9 |
4 |
=-
5 |
4 |
9 |
4 |
=-
5 |
4 |
9 |
4 |
=
9 |
4 |
|
|
点评:本题主要考查了特征值与特征向量的计算以及利用特征向量求向量乘方的问题,属于矩阵中的中档题.
练习册系列答案
相关题目