题目内容
18.设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.令g1(x)=g(x),${g_{n+1}}=g({g_n}(x)),n∈{N^+}$,请猜想出gn(x)的表达式,并用数学归纳法加以证明.分析 由题意猜想gn(x)=$\frac{x}{1+nx}$,利用数学归纳法的证明步骤进行证明.
解答 解:由题设得,g(x)=$\frac{x}{1+x}$(x≥0).由已知得,g1(x)=$\frac{x}{1+x}$,
g2(x)=g(g1(x))=$\frac{\frac{x}{1+x}}{1+\frac{x}{1+x}}$=$\frac{x}{1+2x}$,g3(x)=$\frac{x}{1+3x}$,…,可得gn(x)=$\frac{x}{1+nx}$,
下面用数学归纳法证明.
①当n=1时,g1(x)=$\frac{x}{1+x}$,结论成立.
②假设n=k(k≥2且k∈N*)时结论成立,
即gk(x)=$\frac{x}{1+kx}$.那么,当n=k+1时,
gk+1(x)=g(gk(x))=$\frac{gk(x)}{1+gk(x)}$=$\frac{\frac{x}{1+kx}}{1+\frac{x}{1+kx}}$=$\frac{x}{1+(k+1)x}$,
即结论成立.
由①②可知,结论对n∈N*成立.
点评 本题考查数学归纳法,考查学生的计算能力,考查猜想与证明,正确理解数学归纳法的证明步骤是关键.
练习册系列答案
相关题目
6.已知直线$\left\{\begin{array}{l}{x={x}_{0}+at}\\{y={y}_{0}+bt}\end{array}\right.$(t为参数)上两点A,B对应的参数值是t1,t2,则|AB|等于( )
A. | |t1+t2| | B. | |t1-t2| | C. | $\sqrt{{a}^{2}+{b}^{2}}$|t1-t2| | D. | $\frac{|{t}_{1}-{t}_{2}|}{\sqrt{{a}^{2}+{b}^{2}}}$ |
13.用数学归纳法证明:“两两相交且不共点的n条直线把平面分为f(n)部分,则f(n)=1+$\frac{n(n+1)}{2}$.”在证明第二步归纳递推的过程中,用到f(k+1)=f(k)+( )
A. | k-1 | B. | k | C. | k+1 | D. | $\frac{k(k+1)}{2}$ |
7.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=5,|$\overrightarrow{b}$|=4,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,则($\overrightarrow{a}$+2$\overrightarrow{b}$)与$\overrightarrow{b}$夹角余弦为( )
A. | $\frac{5}{7}$ | B. | $\frac{11}{14}$ | C. | -$\frac{5}{7}$ | D. | -$\frac{11}{14}$ |