ÌâÄ¿ÄÚÈÝ
¶¨ÒåÏòÁ¿=£¨a£¬b£©µÄ¡°Ïà°éº¯Êý¡±Îªf£¨x£©=asinx+bcosx£¬º¯Êýf£¨x£©=asinx+bcosxµÄ¡°Ïà°éÏòÁ¿¡±Îª=£¨a£¬b£©£¨ÆäÖÐOΪ×ø±êԵ㣩£¬¼ÇƽÃæÄÚËùÓÐÏòÁ¿µÄ¡°Ïà°éº¯Êý¡±¹¹³ÉµÄ¼¯ºÏΪS¡£
£¨1£©Éèg£¨x£©=3sin£¨x+£©+4sinx£¬ÇóÖ¤£ºg£¨x£©¡ÊS£»
£¨2£©ÒÑÖªh£¨x£©=cos£¨x+¦Á£©+2cosx£¬ÇÒh£¨x£©¡ÊS£¬ÇóÆä¡°Ïà°éÏòÁ¿¡±µÄÄ££»
£¨3£©ÒÑÖªM£¨a£¬b£©£¨b¡Ù0£©ÎªÔ²C£º£¨x-2£©2+y2=1ÉÏÒ»µã£¬ÏòÁ¿µÄ¡°Ïà°éº¯Êý¡±f£¨x£©ÔÚx=x0´¦È¡µÃ×î´óÖµ£¬µ±µãMÔÚÔ²CÉÏÔ˶¯Ê±£¬Çótan2x0µÄÈ¡Öµ·¶Î§¡£
£¨1£©Éèg£¨x£©=3sin£¨x+£©+4sinx£¬ÇóÖ¤£ºg£¨x£©¡ÊS£»
£¨2£©ÒÑÖªh£¨x£©=cos£¨x+¦Á£©+2cosx£¬ÇÒh£¨x£©¡ÊS£¬ÇóÆä¡°Ïà°éÏòÁ¿¡±µÄÄ££»
£¨3£©ÒÑÖªM£¨a£¬b£©£¨b¡Ù0£©ÎªÔ²C£º£¨x-2£©2+y2=1ÉÏÒ»µã£¬ÏòÁ¿µÄ¡°Ïà°éº¯Êý¡±f£¨x£©ÔÚx=x0´¦È¡µÃ×î´óÖµ£¬µ±µãMÔÚÔ²CÉÏÔ˶¯Ê±£¬Çótan2x0µÄÈ¡Öµ·¶Î§¡£
½â£º£¨1£©g£¨x£©=3sin£¨x+ £©+4sinx=4sinx+3cosx£¬
Æä¡®Ïà°éÏòÁ¿¡¯ =£¨4£¬3£©£¬g£¨x£©¡ÊS¡£
£¨2£©h£¨x£©=cos£¨x+¦Á£©+2cosx =£¨cosxcos¦Á-sinxsin¦Á£©+2cosx =-sin¦Ásinx+£¨cos¦Á+2£©cosx
¡àº¯Êýh£¨x£©µÄ¡®Ïà°éÏòÁ¿¡¯ =£¨-sin¦Á£¬cos¦Á+2£©
Ôò| |= = ¡£
£¨3£©µÄ¡®Ïà°éº¯Êý¡¯f£¨x£©=asinx+bcosx=sin£¨x+¦Õ£©£¬
ÆäÖÐcos¦Õ=£¬sin¦Õ=£®
µ±x+¦Õ=2k¦Ð+£¬k¡ÊZʱ£¬f£¨x£©È¡µ½×î´óÖµ£¬¹Êx0=2k¦Ð+-¦Õ£¬k¡ÊZ
¡àtanx0=tan£¨2k¦Ð+-¦Õ£©=cot¦Õ=£¬tan2x0===
ΪֱÏßOMµÄбÂÊ£¬Óɼ¸ºÎÒâÒåÖª£º¡Ê[-£¬0£©¡È£¨0£¬]
Áîm=£¬Ôòtan2x0=£¬m¡Ê[-£¬0£©¡È£¨0£¬}
µ±-¡Üm£¼0ʱ£¬º¯Êýtan2x0=µ¥µ÷µÝ¼õ£¬
¡à0£¼tan2x0¡Ü£»
µ±0£¼m¡Üʱ£¬º¯Êýtan2x0=µ¥µ÷µÝ¼õ£¬
¡à-¡Ütan2x0£¼0
×ÛÉÏËùÊö£¬tan2x0¡Ê[-£¬0£©¡È£¨0£¬]¡£
Æä¡®Ïà°éÏòÁ¿¡¯ =£¨4£¬3£©£¬g£¨x£©¡ÊS¡£
£¨2£©h£¨x£©=cos£¨x+¦Á£©+2cosx =£¨cosxcos¦Á-sinxsin¦Á£©+2cosx =-sin¦Ásinx+£¨cos¦Á+2£©cosx
¡àº¯Êýh£¨x£©µÄ¡®Ïà°éÏòÁ¿¡¯ =£¨-sin¦Á£¬cos¦Á+2£©
Ôò| |= = ¡£
£¨3£©µÄ¡®Ïà°éº¯Êý¡¯f£¨x£©=asinx+bcosx=sin£¨x+¦Õ£©£¬
ÆäÖÐcos¦Õ=£¬sin¦Õ=£®
µ±x+¦Õ=2k¦Ð+£¬k¡ÊZʱ£¬f£¨x£©È¡µ½×î´óÖµ£¬¹Êx0=2k¦Ð+-¦Õ£¬k¡ÊZ
¡àtanx0=tan£¨2k¦Ð+-¦Õ£©=cot¦Õ=£¬tan2x0===
ΪֱÏßOMµÄбÂÊ£¬Óɼ¸ºÎÒâÒåÖª£º¡Ê[-£¬0£©¡È£¨0£¬]
Áîm=£¬Ôòtan2x0=£¬m¡Ê[-£¬0£©¡È£¨0£¬}
µ±-¡Üm£¼0ʱ£¬º¯Êýtan2x0=µ¥µ÷µÝ¼õ£¬
¡à0£¼tan2x0¡Ü£»
µ±0£¼m¡Üʱ£¬º¯Êýtan2x0=µ¥µ÷µÝ¼õ£¬
¡à-¡Ütan2x0£¼0
×ÛÉÏËùÊö£¬tan2x0¡Ê[-£¬0£©¡È£¨0£¬]¡£
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿