题目内容

若非零实数m、n满足2m+n=0,且在二项式(axm+bxn12(a>0,b>0)的展开式中当且仅当常数项是系数最大的项,
(1)求常数项是第几项;
(2)求数学公式的取值范围.

解:(1)设Tr+1=C12r(axm12-r(bxnr为=C12ra12-r br xm(12-r)+nr为常数项,------(1分)
则可由,--(3分)
解得 r=4,------(5分) 所以常数项是第5项…(7分)
(2)由只有常数项为最大项且a>0,b>0,可得,-----(10分)
,且
即5a>8b,且 9b>4a,再由a>0,b>0 解得
解得 .-----(12分)
分析:(1)求出通项Tr+1=C12ra12-r br xm(12-r)+nr,由,求出r=4,得常数项是第5项.
(2)由只有常数项为最大项且a>0,b>0,可得,由此求得的取值范围.
点评:本题主要考查二项式定理,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网