题目内容

若非零实数m、n满足tanα-sinα=m,tanα+sinα=n,则cosα等于(  )
A、
n-m
m+n
B、
m-n
2
C、
m+n
2
D、
m-n
n+m
分析:解方程求出tanα和sinα,利用tanα=
sinα
cosα
,可得cosα=
sinα
tanα
,把tanα和sinα 代入运算可得结果.
解答:解:∵tanα-sinα=m,tanα+sinα=n,∴tanα=
m+n
2
,sinα=
n-m
2

又 tanα=
sinα
cosα
,∴cosα=
sinα
tanα
=
n-m
m+n

故选 A.
点评:本题考查同角三角函数的基本关系的应用,解出tanα和sinα 是解题的突破口.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网