题目内容
在数列{an}中,a1=1,当n≥2时,an,Sn,Sn-
成等比数列.
(1)求a2,a3,a4,并推出an的表达式;(2)用数学归纳法证明所得的结论;
(3)求数列{an}前n项的和.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205347083328.png)
(1)求a2,a3,a4,并推出an的表达式;(2)用数学归纳法证明所得的结论;
(3)求数列{an}前n项的和.
解:∵an,Sn,Sn-
成等比数列,∴Sn2=an·(Sn-
)(n≥2) (*)
(1)由a1=1,S2=a1+a2=1+a2,代入(*)式得:a2=-![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205347177365.png)
由a1=1,a2=-
,S3=
+a3代入(*)式得:a3=-![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205347239393.png)
同理可得:a4=-
,由此可推出:an=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232053473641312.png)
(2)①当n=1,2,3,4时,由(*)知猜想成立.
②假设n=k(k≥2)时,ak=-
成立
故Sk2=-
·(Sk-
)
∴(2k-3)(2k-1)Sk2+2Sk-1=0
∴Sk=
(舍)
由Sk+12=ak+1·(Sk+1-
),得(Sk+ak+1)2=ak+1(ak+1+Sk-
)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232053474893179.png)
由①②知,an=
对一切n∈N成立.
(3)由(2)得数列前n项和Sn=
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205347083328.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205347083328.png)
(1)由a1=1,S2=a1+a2=1+a2,代入(*)式得:a2=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205347177365.png)
由a1=1,a2=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205347177365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205347224315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205347239393.png)
同理可得:a4=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205347317421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232053473641312.png)
(2)①当n=1,2,3,4时,由(*)知猜想成立.
②假设n=k(k≥2)时,ak=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205347380789.png)
故Sk2=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205347380789.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205347083328.png)
∴(2k-3)(2k-1)Sk2+2Sk-1=0
∴Sk=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205347427817.png)
由Sk+12=ak+1·(Sk+1-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205347083328.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205347083328.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232053474893179.png)
由①②知,an=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232053475201313.png)
(3)由(2)得数列前n项和Sn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205347536470.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目